We study the K-stability of a polarised variety with non-reductive automorphism group. We associate a canonical filtration of the co-ordinate ring to each variety of this kind, which destabilises the variety in several examples which we compute. We conjecture this holds in general. This is an algebro-geometric analogue of Matsushima's theorem regarding the existence of constant scalar curvature Kahler metrics. As an application, we give an example of an orbifold del Pezzo surface without a Kahler-Einstein metric.

Codogni, G., Dervan, R. (2016). Non-reductive automorphism groups, the Loewy filtration and k-stability. ANNALES DE L'INSTITUT FOURIER, 66(5), 1895-1921 [10.5802/aif.3052].

Non-reductive automorphism groups, the Loewy filtration and k-stability

Codogni G.;
2016-01-01

Abstract

We study the K-stability of a polarised variety with non-reductive automorphism group. We associate a canonical filtration of the co-ordinate ring to each variety of this kind, which destabilises the variety in several examples which we compute. We conjecture this holds in general. This is an algebro-geometric analogue of Matsushima's theorem regarding the existence of constant scalar curvature Kahler metrics. As an application, we give an example of an orbifold del Pezzo surface without a Kahler-Einstein metric.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
K-stability; reductive groups; Kahler-Einstein metrics; radical filtration
Codogni, G., Dervan, R. (2016). Non-reductive automorphism groups, the Loewy filtration and k-stability. ANNALES DE L'INSTITUT FOURIER, 66(5), 1895-1921 [10.5802/aif.3052].
Codogni, G; Dervan, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/227823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact