Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer which is widely used in the manufacture of plastics. As a common environmental contaminant and recognized endocrine disrupting chemical, DEHP is able to deregulate the functions of a variety of tissues, including the reproductive system both in males and females. In order to investigate the possible effects of DEHP on the first wave of folliculogenesis, occurring in the mouse ovary postnatally, mice were administered 20 or 40 mu g/kg DEHP through intraperitoneal injection at days 5, 10 and 15 post partum (dpp). Following DEHP treatment the gene expression profile of control and exposed ovaries was compared by microarray analyses at 20 dpp. We found that in the exposed ovaries DEHP significantly altered the transcript levels of several immune response and steroidogenesis associated genes. In particular, DEHP significantly decreased the expression of genes essential for androgen synthesis by theca cells including Lhcgr, Cyp17a1, Star and Ldlr. Immunohistochemistry and immune flow cytometry confirmed reduced expression of LHCGR and CYP17A1 proteins in the exposed theca cells. These effects were associated to a significant reduction in ovarian concentrations of progesterone, 17 beta-estradiol and androstenedione along with a reduction of LH in the serum. Although we did not find a significant reduction of the number of primary, secondary or antral follicles in the DEHP exposed ovaries when compared to controls, we did observe that theca cells showed an altered structure of the nuclear envelope, fewer mitochondria, and mitochondria with a reduced number of cristae. Collectively, these results demonstrate a deleterious effect of DEHP exposure on ovarian steroidogenesis during the first wave of folliculogenesis that could potentially affect the correct establishment of the hypothalamic-pituitary-ovarian axis and the onset of puberty.
Lai, F.-., Liu, J.-., Li, L., Ma, J.-., Liu, X.-., Liu, Y.-., et al. (2017). Di (2-ethylhexyl) phthalate impairs steroidogenesis in ovarian follicular cells of prepuberal mice. ARCHIVES OF TOXICOLOGY, 91(3), 1279-1292 [10.1007/s00204-016-1790-z].
Di (2-ethylhexyl) phthalate impairs steroidogenesis in ovarian follicular cells of prepuberal mice
Chen H.;De Felici M.Writing – Original Draft Preparation
;
2017-01-01
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer which is widely used in the manufacture of plastics. As a common environmental contaminant and recognized endocrine disrupting chemical, DEHP is able to deregulate the functions of a variety of tissues, including the reproductive system both in males and females. In order to investigate the possible effects of DEHP on the first wave of folliculogenesis, occurring in the mouse ovary postnatally, mice were administered 20 or 40 mu g/kg DEHP through intraperitoneal injection at days 5, 10 and 15 post partum (dpp). Following DEHP treatment the gene expression profile of control and exposed ovaries was compared by microarray analyses at 20 dpp. We found that in the exposed ovaries DEHP significantly altered the transcript levels of several immune response and steroidogenesis associated genes. In particular, DEHP significantly decreased the expression of genes essential for androgen synthesis by theca cells including Lhcgr, Cyp17a1, Star and Ldlr. Immunohistochemistry and immune flow cytometry confirmed reduced expression of LHCGR and CYP17A1 proteins in the exposed theca cells. These effects were associated to a significant reduction in ovarian concentrations of progesterone, 17 beta-estradiol and androstenedione along with a reduction of LH in the serum. Although we did not find a significant reduction of the number of primary, secondary or antral follicles in the DEHP exposed ovaries when compared to controls, we did observe that theca cells showed an altered structure of the nuclear envelope, fewer mitochondria, and mitochondria with a reduced number of cristae. Collectively, these results demonstrate a deleterious effect of DEHP exposure on ovarian steroidogenesis during the first wave of folliculogenesis that could potentially affect the correct establishment of the hypothalamic-pituitary-ovarian axis and the onset of puberty.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.