In photoelectrochemical (PEC) water splitting systems, crucial obstacles limiting their performance are poor charge carrier dynamics and high recombination rate of photoexcited electron-hole pairs. Here, we report that this issue can be alleviated by engineering a hybrid junction that is composed of homo- and hetero-junctions. This strategy is performed by facile hand-spraying MoS2 over the surface of anatase/rutile homo-junction TiO2 film on the Ti substrate to further form a hybrid junction photocathode. By applying this photocathode into PEC reactor, enhanced catalytic activity is achieved under visible light (AM1.5 illumination of 300 W/m(2)) with hydrogen evolution reaction (HER) potential of -114 mV versus reversible hydrogen electrode (RHE) at 10 mA/cm(2) and long-term stability of more than 10 times improvement comparing to ordinary electrode without the introduction of hybrid-junction. The hybrid-junction that effectively regulates charge separation and transfer pathways is proven to be responsible for the enhanced activity. As a novel exploration, this hybrid-junction system comprising of low-cost, efficient charge separation and transfer, and visible light responsivity offers a new path for relative materials to boost their PEC performance.

Cheng, C., Liu, G., Du, K., Li, G., Zhang, W., Sanna, S., et al. (2018). Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. APPLIED CATALYSIS. B, ENVIRONMENTAL, 237, 416-423 [10.1016/j.apcatb.2018.06.012].

Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction

Sanna S.;
2018-01-01

Abstract

In photoelectrochemical (PEC) water splitting systems, crucial obstacles limiting their performance are poor charge carrier dynamics and high recombination rate of photoexcited electron-hole pairs. Here, we report that this issue can be alleviated by engineering a hybrid junction that is composed of homo- and hetero-junctions. This strategy is performed by facile hand-spraying MoS2 over the surface of anatase/rutile homo-junction TiO2 film on the Ti substrate to further form a hybrid junction photocathode. By applying this photocathode into PEC reactor, enhanced catalytic activity is achieved under visible light (AM1.5 illumination of 300 W/m(2)) with hydrogen evolution reaction (HER) potential of -114 mV versus reversible hydrogen electrode (RHE) at 10 mA/cm(2) and long-term stability of more than 10 times improvement comparing to ordinary electrode without the introduction of hybrid-junction. The hybrid-junction that effectively regulates charge separation and transfer pathways is proven to be responsible for the enhanced activity. As a novel exploration, this hybrid-junction system comprising of low-cost, efficient charge separation and transfer, and visible light responsivity offers a new path for relative materials to boost their PEC performance.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/01 - FISICA SPERIMENTALE
English
Con Impact Factor ISI
Hybrid-junction; Water splitting; Titanium dioxide; Z-scheme; Molybdenum disulfide
Cheng, C., Liu, G., Du, K., Li, G., Zhang, W., Sanna, S., et al. (2018). Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. APPLIED CATALYSIS. B, ENVIRONMENTAL, 237, 416-423 [10.1016/j.apcatb.2018.06.012].
Cheng, C; Liu, G; Du, K; Li, G; Zhang, W; Sanna, S; Chen, Y; Pryds, N; Wang, K
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/224335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact