We show that the First-Passage-Time probability distribution of a Lévy time-changed Brownian motion with drift is solution of a time fractional advection-diffusion equation subject to initial and boundary conditions; the Caputo fractional derivative with respect to time is considered. We propose a high order compact implicit discretization scheme for solving this fractional PDE problem and we show that it preserves the structural properties (non-negativity, boundedness, time monotonicity) of the theoretical solution, having to be a probability distribution. Numerical experiments confirming such findings are reported. Simulations of the sample paths of the considered process are also performed and used to both provide suitable boundary conditions and to validate the numerical results.
Abundo, M. (2019). A fractional PDE for first passage time of time-changed Brownian motion and its numerical solution. APPLIED NUMERICAL MATHEMATICS.
A fractional PDE for first passage time of time-changed Brownian motion and its numerical solution.
Abundo Mario
2019-01-01
Abstract
We show that the First-Passage-Time probability distribution of a Lévy time-changed Brownian motion with drift is solution of a time fractional advection-diffusion equation subject to initial and boundary conditions; the Caputo fractional derivative with respect to time is considered. We propose a high order compact implicit discretization scheme for solving this fractional PDE problem and we show that it preserves the structural properties (non-negativity, boundedness, time monotonicity) of the theoretical solution, having to be a probability distribution. Numerical experiments confirming such findings are reported. Simulations of the sample paths of the considered process are also performed and used to both provide suitable boundary conditions and to validate the numerical results.File | Dimensione | Formato | |
---|---|---|---|
APNUM2019.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
1.77 MB
Formato
Adobe PDF
|
1.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.