To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (T-x) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.

Agresti, A., Pazniak, A., Pescetelli, S., Di Vito, A., Rossi, D., Pecchia, A., et al. (2019). Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. NATURE MATERIALS, 18(11), 1228-1234 [10.1038/s41563-019-0478-1].

Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells

Agresti A.;Pescetelli S.;Di Vito A.;Rossi D.;Auf der Maur M.;Di Carlo A.
2019-01-01

Abstract

To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (T-x) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials' WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/01 - ELETTRONICA
English
Agresti, A., Pazniak, A., Pescetelli, S., Di Vito, A., Rossi, D., Pecchia, A., et al. (2019). Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. NATURE MATERIALS, 18(11), 1228-1234 [10.1038/s41563-019-0478-1].
Agresti, A; Pazniak, A; Pescetelli, S; Di Vito, A; Rossi, D; Pecchia, A; Auf der Maur, M; Liedl, A; Larciprete, R; Kuznetsov, Dv; Saranin, D; Di Carlo...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
NatureMat_Agresti_et_al.pdf

Open Access dal 10/03/2020

Licenza: Copyright dell'editore
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/221843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 494
  • ???jsp.display-item.citation.isi??? 481
social impact