Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge-invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (i.e. there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.

Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E. (2019). Linking numbers in local quantum field theory. LETTERS IN MATHEMATICAL PHYSICS, 109(4), 829-842 [10.1007/s11005-018-1136-2].

Linking numbers in local quantum field theory

Ciolli F.;Ruzzi G.;
2019-01-01

Abstract

Linking numbers appear in local quantum field theory in the presence of tensor fields, which are closed two-forms on Minkowski space. Given any pair of such fields, it is shown that the commutator of the corresponding intrinsic (gauge-invariant) vector potentials, integrated about spacelike separated, spatial loops, are elements of the center of the algebra of all local fields. Moreover, these commutators are proportional to the linking numbers of the underlying loops. If the commutators are different from zero, the underlying two-forms are not exact (i.e. there do not exist local vector potentials for them). The theory then necessarily contains massless particles. A prominent example of this kind, due to J.E. Roberts, is given by the free electromagnetic field and its Hodge dual. Further examples with more complex mass spectrum are presented in this article.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Intrinsic vector potential; Linking numbers; Massless particles
http://www.kluweronline.com/issn/0377-9017
Buchholz, D., Ciolli, F., Ruzzi, G., Vasselli, E. (2019). Linking numbers in local quantum field theory. LETTERS IN MATHEMATICAL PHYSICS, 109(4), 829-842 [10.1007/s11005-018-1136-2].
Buchholz, D; Ciolli, F; Ruzzi, G; Vasselli, E
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BCRV-2018-Linking-LMP.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 458.74 kB
Formato Adobe PDF
458.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/219503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact