Understanding the mechanisms that underly smooth muscle hypertrophy is a major issue in vascular pathology. In fact increase in vascular smooth muscle cell (VSMC) size is frequently associated with hypertension, not only as resulting from mechanical overload but also as a causative factor for vessel remodelling leading to elevated blood pressure. Our experimental model are peritubular smooth muscle cells (PSMC) from rat testis. They are an epithelioid contractile layer surrounding the seminiferous epithelium and are responsible for the propulsion of sperm along seminiferous tubules. PSMC lack the SMC characteristic elongated shape but show specific smooth muscle markers like -sm-actin, sm-myosin, desmin and ETA and ETB endothelin receptors. At variance with other types of smooth muscle cells, PSMC can be cultured in simple serum-free medium under totally controlled conditions maintaining traits of the contractile phenotype, such as the expression of specific isoactin and responsiveness to the potent conctractile agonist endothelin-1 (ET-1). The present study investigates the long term hypertrophic response and the transduction pathways involved in up-regulation of the differentiated phenotype and induction of hypertrophy in PSMC by PDGF-BB and ET-1. Cell hypertrophy is a well known response of muscle cells to long term stimulation with agonists of contraction. This reactive behaviour, characterised by an increase in cell size and myofilament components as well as by increased protein synthesis, is known to take place not only in striated muscle but also in smooth muscle cells. On the other hand, a comprehensive model of how smooth muscle cell hypertrophy develops is so far lacking. At variance with striated muscle, smooth muscle differentiated phenotype is labile, both in vitro and in vivo. In these conditions of plasticity, the identification of the specific intracellular pathways responsible for the maintenance of the smooth muscle contractile phenotype and for the development of cell hypertrophy has so far proved elusive. In PSMC the growth factor PDGF-BB unespectedly fails to induce proliferation but rather induces transitory cell contraction followed by cell hypertrophy. In order to extend our previous data on the role of MAPK in PSMC cell hypertrophy, the possible role of p38 has been investigated. This MAPK is rapidly activated by PDGF-BB and when stimulated in the presence of the p38 inhibitor SB203580 cells were found to contain about half -SM actin and failed to develop sm--actin-containing stress fibers; cytofluorimetric analysis of cell size showed that SB203580 significantly and dose dependently reduced the hypertrophic response. Comparable results, decrease of sm--actin syntesis, no formation of sm--actin stress fibers and block of cellular size increase, were observed when the response to PDGF-BB was studied in the continuous presence of Y27632, an inhibitor of the Rho-dependent kinase ROCK. The transcription factor nucleosomal kinase MSK1, downstream target of p38, was activated by PDGF-BB, and p38 inhibitor SB203580 inhibited its phosphorylation which appeared unaffected by ROCK inhibitor Y27632. In concluding, p38 and the Rho-ROCK system were found to play a prominent, likely independent, role in the up-regulation of PSMC differentiated phenotype and induction of hypertrophy by PDGF-BB. As for ET-1, long term treatment of PSMC with this agonist of contraction did not induce proliferation, but was found to stimulate general protein syntesis. Moreover, treatment of PSMC with IRL1620, specific agonist of ETB receptor, or with ET-1 plus BQ788, specific inhibitor of ETB, shows that both receptors are implicated in the long term response to ET-1. In all cases we assist to the increase of specific contractile markers syntesis: sm--actin, desmin, caldesmon and calponin. In particular stimulation of ET-1 receptors, in combination or separately, results in the formation of sm--actin stress fibers and in increase of desmin intermediate filaments. The potentiation of the differentiated phenotype is accompanied by an increase of cell size evaluated by cytofluorimetric analysis. In concluding, the hypertrophic phenotype induced by long term treatment with ET-1 is mediated by the two receptors independently. Moreover, molecular analysis shows that the role of PKC is not important to the induction of PSMC hypetrophy, but the pathway RhoA-ROCK may have a role in the potentiation of contractile phenotype through ETB receptor.

La regolazione del fenotipo differenziato ed ipertrofico nelle cellule muscolari lisce è un settore di ricerca di ampio interesse a causa delle problematiche legate alle patologie vascolari. Il nostro modello di studio è costituito dalle cellule muscolari lisce peritubulari (PSMC) della gonade maschile. Esse costituiscono uno strato epitelioide contrattile intorno all’epitelio seminifero e sono responsabili della progressione degli spermatozoi. Pur non possedendo la caratteristica morfologia allungata delle cellule muscolari, le PSMC presentano markers specifici del muscolo liscio quali la smactina, condivisa con le cellule muscolari vascolari, la sm-miosina, la desmina nonché i recettori (ET-A ed ET-B) ad alta affinità per l’Endotelina-1 (ET-1), potente vasocostrittore ed agonista fisiologico della contrazione delle PSMC. Tuttavia, diversamente dagli altri tipi di cellule muscolari lisce, popolazioni altamente purificate di PSMC sopravvivono e mantengono il loro fenotipo contrattile in colture primarie ed in condizioni controllate in assenza di siero, costituendo così un affidabile modello sperimentale di cellule muscolari lisce. La ricerca presentata in questa tesi di dottorato riguarda lo studio in PSMC della regolazione del fenotipo contrattile e lo sviluppo del fenotipo ipertrofico nonché i meccanismi molecolari che ne sono alla base. E' ben noto infatti che uno stimolo contrattile protratto nel tempo induce la cellula muscolare (cardiaca, scheletrica o liscia) ad ipertrofizzare. Purtroppo però ancora sono poche le conoscenze riguardo l'ipertrofia del muscolo liscio nonostante l'interesse sviluppatosi nel campo delle patologie vascolari. Infatti, è accertato che il potenziamento del fenotipo contrattile delle cellule muscolari lisce vascolari (VSMC) e la conseguente ipertrofia cellulare sono associati ad esempio all’ipertensione arteriosa. Proprio sulla base delle analogie con le VSMC è stata presa in esame la risposta al trattamento cronico con due fattori: il PDGF-BB, fattore di crescita che nelle PSMC induce inaspettatamente mobilizzazione di calcio, contrazione e conseguente ipertrofia e l’ET-1, noto agonista fisiologico della contrazione. Per quanto riguarda il PDGF-BB nel nostro laboratorio è stata caratterizzata la risposta delle PSMC a questo fattore: dopo quattro giorni di trattamento si assiste allo sviluppo del fenotipo ipertrofico in assenza di proliferazione. Inoltre abbiamo identificato in p38 un regolatore chiave dell’induzione del fenotipo ipertrofico in quanto l’inibizione farmacologica della sua attività impedisce non solo la formazione di stress fibers di -sm-actina, ma soprattutto l’aumento di taglia indotto dal trattamento con il fattore di crescita. Nello studio delle possibili vie di trasduzione implicate nell’induzione del fenotipo ipertrofico indotto da PDGF-BB, abbiamo avuto risultati comparabili nell’analisi della small-GTPasi RhoA. Infatti, anche in questo caso, l’inibizione farmacologica di ROCK, chinasi a valle di RhoA, blocca l’induzione del fenotipo ipertrofico da parte del PDGF-BB, che si esplica sia a livello della mancata sintesi e riorganizzazione dell’-sm-actina in stress fibers, sia per quanto riguarda il blocco nell’aumento di taglia cellulare indotto dal PDGF-BB. Infine, abbiamo anche escluso un ruolo gerarchico dei due pathway che considerasse la presenza di RhoA-ROCK a monte di p38 in quanto l’inibizione di ROCK non blocca la fosforilazione e quindi l’attività né di p38 né della chinasi subito a valle MSK1. Per quanto riguarda ET-1 in primis abbiamo escluso un possibile effetto sulla proliferazione delle PSMC, mentre abbiamo evidenziato un aumento della sintesi proteica totale. Contemporaneamente ad ET-1, l’uso di IRL 1620, agonista selettivo per ET-B, o di ET-1 più BQ-788, inibitore specifico di ET-B, ci ha permesso di evidenziare come entrambi i recettori siano implicati nella risposta ad ET-1. In tutti i casi assistiamo all’aumento della sintesi specifica dei marcatori del fenotipo differenziato: -sm-actina, desmina, caldesmon e calponin. In particolare, la stimolazione cronica, sia contemporanea sia separata, dei due recettori per ET-1 porta alla formazione di stress fibers di -sm-actina, nonché all’aumento dei filamenti intermedi di desmina. Oltre al potenziamento del fenotipo contrattile abbiamo analizzato anche l’incremento della taglia cellulare ed abbiamo concluso che i due recettori sono indipendenti nell’induzione del fenotipo ipertrofico. Inoltre, l’analisi dei meccanismi molecolari ci ha permesso di escludere l’eventuale ruolo della PKC, mentre l’analisi del pathway RhoA-ROCK ci ha indicato un possibile ruolo della chinasi ROCK nell’induzione nel potenziamento del fenotipo contrattile delle PSMC che si esplica con la stimolazione selettiva del recettore ETB.

Romano, F. (2006). Regolazione del fenomeno contrattile nelle cellule muscolari lisce.

Regolazione del fenomeno contrattile nelle cellule muscolari lisce

ROMANO, FRANCESCA
2006-03-06

Abstract

La regolazione del fenotipo differenziato ed ipertrofico nelle cellule muscolari lisce è un settore di ricerca di ampio interesse a causa delle problematiche legate alle patologie vascolari. Il nostro modello di studio è costituito dalle cellule muscolari lisce peritubulari (PSMC) della gonade maschile. Esse costituiscono uno strato epitelioide contrattile intorno all’epitelio seminifero e sono responsabili della progressione degli spermatozoi. Pur non possedendo la caratteristica morfologia allungata delle cellule muscolari, le PSMC presentano markers specifici del muscolo liscio quali la smactina, condivisa con le cellule muscolari vascolari, la sm-miosina, la desmina nonché i recettori (ET-A ed ET-B) ad alta affinità per l’Endotelina-1 (ET-1), potente vasocostrittore ed agonista fisiologico della contrazione delle PSMC. Tuttavia, diversamente dagli altri tipi di cellule muscolari lisce, popolazioni altamente purificate di PSMC sopravvivono e mantengono il loro fenotipo contrattile in colture primarie ed in condizioni controllate in assenza di siero, costituendo così un affidabile modello sperimentale di cellule muscolari lisce. La ricerca presentata in questa tesi di dottorato riguarda lo studio in PSMC della regolazione del fenotipo contrattile e lo sviluppo del fenotipo ipertrofico nonché i meccanismi molecolari che ne sono alla base. E' ben noto infatti che uno stimolo contrattile protratto nel tempo induce la cellula muscolare (cardiaca, scheletrica o liscia) ad ipertrofizzare. Purtroppo però ancora sono poche le conoscenze riguardo l'ipertrofia del muscolo liscio nonostante l'interesse sviluppatosi nel campo delle patologie vascolari. Infatti, è accertato che il potenziamento del fenotipo contrattile delle cellule muscolari lisce vascolari (VSMC) e la conseguente ipertrofia cellulare sono associati ad esempio all’ipertensione arteriosa. Proprio sulla base delle analogie con le VSMC è stata presa in esame la risposta al trattamento cronico con due fattori: il PDGF-BB, fattore di crescita che nelle PSMC induce inaspettatamente mobilizzazione di calcio, contrazione e conseguente ipertrofia e l’ET-1, noto agonista fisiologico della contrazione. Per quanto riguarda il PDGF-BB nel nostro laboratorio è stata caratterizzata la risposta delle PSMC a questo fattore: dopo quattro giorni di trattamento si assiste allo sviluppo del fenotipo ipertrofico in assenza di proliferazione. Inoltre abbiamo identificato in p38 un regolatore chiave dell’induzione del fenotipo ipertrofico in quanto l’inibizione farmacologica della sua attività impedisce non solo la formazione di stress fibers di -sm-actina, ma soprattutto l’aumento di taglia indotto dal trattamento con il fattore di crescita. Nello studio delle possibili vie di trasduzione implicate nell’induzione del fenotipo ipertrofico indotto da PDGF-BB, abbiamo avuto risultati comparabili nell’analisi della small-GTPasi RhoA. Infatti, anche in questo caso, l’inibizione farmacologica di ROCK, chinasi a valle di RhoA, blocca l’induzione del fenotipo ipertrofico da parte del PDGF-BB, che si esplica sia a livello della mancata sintesi e riorganizzazione dell’-sm-actina in stress fibers, sia per quanto riguarda il blocco nell’aumento di taglia cellulare indotto dal PDGF-BB. Infine, abbiamo anche escluso un ruolo gerarchico dei due pathway che considerasse la presenza di RhoA-ROCK a monte di p38 in quanto l’inibizione di ROCK non blocca la fosforilazione e quindi l’attività né di p38 né della chinasi subito a valle MSK1. Per quanto riguarda ET-1 in primis abbiamo escluso un possibile effetto sulla proliferazione delle PSMC, mentre abbiamo evidenziato un aumento della sintesi proteica totale. Contemporaneamente ad ET-1, l’uso di IRL 1620, agonista selettivo per ET-B, o di ET-1 più BQ-788, inibitore specifico di ET-B, ci ha permesso di evidenziare come entrambi i recettori siano implicati nella risposta ad ET-1. In tutti i casi assistiamo all’aumento della sintesi specifica dei marcatori del fenotipo differenziato: -sm-actina, desmina, caldesmon e calponin. In particolare, la stimolazione cronica, sia contemporanea sia separata, dei due recettori per ET-1 porta alla formazione di stress fibers di -sm-actina, nonché all’aumento dei filamenti intermedi di desmina. Oltre al potenziamento del fenotipo contrattile abbiamo analizzato anche l’incremento della taglia cellulare ed abbiamo concluso che i due recettori sono indipendenti nell’induzione del fenotipo ipertrofico. Inoltre, l’analisi dei meccanismi molecolari ci ha permesso di escludere l’eventuale ruolo della PKC, mentre l’analisi del pathway RhoA-ROCK ci ha indicato un possibile ruolo della chinasi ROCK nell’induzione nel potenziamento del fenotipo contrattile delle PSMC che si esplica con la stimolazione selettiva del recettore ETB.
A.A. 2004/2005
Embriologia medica
16.
Understanding the mechanisms that underly smooth muscle hypertrophy is a major issue in vascular pathology. In fact increase in vascular smooth muscle cell (VSMC) size is frequently associated with hypertension, not only as resulting from mechanical overload but also as a causative factor for vessel remodelling leading to elevated blood pressure. Our experimental model are peritubular smooth muscle cells (PSMC) from rat testis. They are an epithelioid contractile layer surrounding the seminiferous epithelium and are responsible for the propulsion of sperm along seminiferous tubules. PSMC lack the SMC characteristic elongated shape but show specific smooth muscle markers like -sm-actin, sm-myosin, desmin and ETA and ETB endothelin receptors. At variance with other types of smooth muscle cells, PSMC can be cultured in simple serum-free medium under totally controlled conditions maintaining traits of the contractile phenotype, such as the expression of specific isoactin and responsiveness to the potent conctractile agonist endothelin-1 (ET-1). The present study investigates the long term hypertrophic response and the transduction pathways involved in up-regulation of the differentiated phenotype and induction of hypertrophy in PSMC by PDGF-BB and ET-1. Cell hypertrophy is a well known response of muscle cells to long term stimulation with agonists of contraction. This reactive behaviour, characterised by an increase in cell size and myofilament components as well as by increased protein synthesis, is known to take place not only in striated muscle but also in smooth muscle cells. On the other hand, a comprehensive model of how smooth muscle cell hypertrophy develops is so far lacking. At variance with striated muscle, smooth muscle differentiated phenotype is labile, both in vitro and in vivo. In these conditions of plasticity, the identification of the specific intracellular pathways responsible for the maintenance of the smooth muscle contractile phenotype and for the development of cell hypertrophy has so far proved elusive. In PSMC the growth factor PDGF-BB unespectedly fails to induce proliferation but rather induces transitory cell contraction followed by cell hypertrophy. In order to extend our previous data on the role of MAPK in PSMC cell hypertrophy, the possible role of p38 has been investigated. This MAPK is rapidly activated by PDGF-BB and when stimulated in the presence of the p38 inhibitor SB203580 cells were found to contain about half -SM actin and failed to develop sm--actin-containing stress fibers; cytofluorimetric analysis of cell size showed that SB203580 significantly and dose dependently reduced the hypertrophic response. Comparable results, decrease of sm--actin syntesis, no formation of sm--actin stress fibers and block of cellular size increase, were observed when the response to PDGF-BB was studied in the continuous presence of Y27632, an inhibitor of the Rho-dependent kinase ROCK. The transcription factor nucleosomal kinase MSK1, downstream target of p38, was activated by PDGF-BB, and p38 inhibitor SB203580 inhibited its phosphorylation which appeared unaffected by ROCK inhibitor Y27632. In concluding, p38 and the Rho-ROCK system were found to play a prominent, likely independent, role in the up-regulation of PSMC differentiated phenotype and induction of hypertrophy by PDGF-BB. As for ET-1, long term treatment of PSMC with this agonist of contraction did not induce proliferation, but was found to stimulate general protein syntesis. Moreover, treatment of PSMC with IRL1620, specific agonist of ETB receptor, or with ET-1 plus BQ788, specific inhibitor of ETB, shows that both receptors are implicated in the long term response to ET-1. In all cases we assist to the increase of specific contractile markers syntesis: sm--actin, desmin, caldesmon and calponin. In particular stimulation of ET-1 receptors, in combination or separately, results in the formation of sm--actin stress fibers and in increase of desmin intermediate filaments. The potentiation of the differentiated phenotype is accompanied by an increase of cell size evaluated by cytofluorimetric analysis. In concluding, the hypertrophic phenotype induced by long term treatment with ET-1 is mediated by the two receptors independently. Moreover, molecular analysis shows that the role of PKC is not important to the induction of PSMC hypetrophy, but the pathway RhoA-ROCK may have a role in the potentiation of contractile phenotype through ETB receptor.
stress fibers
tubulo seminifero; fenotipo muscolare liscio; modulazione fenotipica; PDGF-BB; ET-1; trasduzione del segnale
Settore BIO/17
Italian
Tesi di dottorato
Romano, F. (2006). Regolazione del fenomeno contrattile nelle cellule muscolari lisce.
File in questo prodotto:
File Dimensione Formato  
Figure introduzione.ppt

non disponibili

Descrizione: Figure introduzione
Dimensione 2.7 MB
Formato Microsoft Powerpoint
2.7 MB Microsoft Powerpoint   Visualizza/Apri   Richiedi una copia
Figure risultati.ppt

non disponibili

Descrizione: Figure risultati
Dimensione 21.68 MB
Formato Microsoft Powerpoint
21.68 MB Microsoft Powerpoint   Visualizza/Apri   Richiedi una copia
554.pdf

non disponibili

Descrizione: tesi
Dimensione 364.07 kB
Formato Adobe PDF
364.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact