Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.

Simao, A., Bolean, M., Favarin, B.z., Veschi, E.a., Tovani, C.b., Ramos, A.p., et al. (2019). Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. JOURNAL OF BONE AND MINERAL METABOLISM, 37(4), 607-613 [10.1007/s00774-018-0962-8].

Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators

Bottini M.;
2019-01-01

Abstract

Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Alkaline phosphatase; Biomineralization; Matrix vesicles; Nucleational core; Proteoliposome
https://link.springer.com/article/10.1007/s00774-018-0962-8
Simao, A., Bolean, M., Favarin, B.z., Veschi, E.a., Tovani, C.b., Ramos, A.p., et al. (2019). Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. JOURNAL OF BONE AND MINERAL METABOLISM, 37(4), 607-613 [10.1007/s00774-018-0962-8].
Simao, Ams; Bolean, M; Favarin, Bz; Veschi, Ea; Tovani, Cb; Ramos, Ap; Bottini, M; Buchet, R; Millan, Jl; Ciancaglini, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMID 30324534 - Journal of Bone and Mineral Metabolism .pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 610.91 kB
Formato Adobe PDF
610.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/217020
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact