Damage accumulation due to fatigue significantly reduces the safety of railway vehicles. Shattered wheel rim failures are the result of large fatigue cracks that propagate roughly parallel to the wheel tread surface. The large stress, most likely due to wheel/rail impact or material discontinuity, is responsible for the initiation of shattered rims. The voids and inclusions of sufficient size in a stress field will also lead to failure of wheels. Significant improvements have been made in recent years to prevent the shattered rim failure. The ‘new’ wheels have a better resistance to the shattered rim failure, due to the fact that the circumferential residual stress on tread of a new wheel must be compressive to comply with requirements of international standard EN 13262. However, this may not necessarily apply for millions of ‘old’ wheels that are still currently in use. At the moment the residual stress measurements are carried out using destructive methods (such as slitting or hole drilling), or using quantitatively ultrasound method obtaining the average stress across the whole section. The main objective of this research was to apply non-destructive neutron diffraction method to quantitatively measure residual stress distribution of the wheel rim in as manufactured condition.

Alessandroni, M., Paradowska, A., Perelli, C., Senesi, R., Andreani, C., Gorini, G., et al. (2011). Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction. Trans Tech publications inc. [10.4028/www.scientific.net/MSF.681.522].

Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction

SENESI, ROBERTO;ANDREANI, CARLA;
2011-01-01

Abstract

Damage accumulation due to fatigue significantly reduces the safety of railway vehicles. Shattered wheel rim failures are the result of large fatigue cracks that propagate roughly parallel to the wheel tread surface. The large stress, most likely due to wheel/rail impact or material discontinuity, is responsible for the initiation of shattered rims. The voids and inclusions of sufficient size in a stress field will also lead to failure of wheels. Significant improvements have been made in recent years to prevent the shattered rim failure. The ‘new’ wheels have a better resistance to the shattered rim failure, due to the fact that the circumferential residual stress on tread of a new wheel must be compressive to comply with requirements of international standard EN 13262. However, this may not necessarily apply for millions of ‘old’ wheels that are still currently in use. At the moment the residual stress measurements are carried out using destructive methods (such as slitting or hole drilling), or using quantitatively ultrasound method obtaining the average stress across the whole section. The main objective of this research was to apply non-destructive neutron diffraction method to quantitatively measure residual stress distribution of the wheel rim in as manufactured condition.
2011
Settore FIS/03 - FISICA DELLA MATERIA
English
Rilevanza internazionale
Monografia
Neutron Diffraction; Residual Stress; Train Wheel
Materials Science Forum, Vol. 681, pp. 522-526.
Alessandroni, M., Paradowska, A., Perelli, C., Senesi, R., Andreani, C., Gorini, G., et al. (2011). Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction. Trans Tech publications inc. [10.4028/www.scientific.net/MSF.681.522].
Monografia
Alessandroni, M; Paradowska, A; Perelli, C; Senesi, R; Andreani, C; Gorini, G; Montedoro, P; Chiti, F; Sala, D; Spinelli, D
File in questo prodotto:
File Dimensione Formato  
127.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 191.81 kB
Formato Adobe PDF
191.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/21676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact