Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.

Scioli, M.g., Storti, G., D'Amico, F., Gentile, P., Kim, B., Cervelli, V., et al. (2019). Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(13), 3296 [10.3390/ijms20133296].

Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities

Storti, Gabriele;Gentile, Pietro;Cervelli, Valerio;Orlandi, Augusto
2019

Abstract

Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/08 - Anatomia Patologica
English
Con Impact Factor ISI
ASC-based drug delivery; adipose-derived stem cells; cancer progression; metastasis; microenvironment; oncological safety
Scioli, M.g., Storti, G., D'Amico, F., Gentile, P., Kim, B., Cervelli, V., et al. (2019). Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 20(13), 3296 [10.3390/ijms20133296].
Scioli, Mg; Storti, G; D'Amico, F; Gentile, P; Kim, B; Cervelli, V; Orlandi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ijms-reviewscioli.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 939.59 kB
Formato Adobe PDF
939.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/216646
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 32
social impact