For [Equation presented here] the linearized maximal operator of the rectangular partial sums of the kind (M;M2) for double Fourier series, we prove a weak-type (Lr;Lr-ϵ) estimate for 1 < r ≤ 2 and any ϵ > 0 in case M2(x; y) = Ax+By with x; y ∈ [0; 2π]; uniformly with respect to A;B ≥ 0.

Prestini, E. (2017). On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting. STUDIA MATHEMATICA, 237(2), 101-117 [10.4064/sm8182-10-2016].

On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting

Prestini E.
2017-01-01

Abstract

For [Equation presented here] the linearized maximal operator of the rectangular partial sums of the kind (M;M2) for double Fourier series, we prove a weak-type (Lr;Lr-ϵ) estimate for 1 < r ≤ 2 and any ϵ > 0 in case M2(x; y) = Ax+By with x; y ∈ [0; 2π]; uniformly with respect to A;B ≥ 0.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
A.e. convergence of double Fourier series; Carleson operator
https://www.impan.pl/shop/publication/transaction/download/product/92077
Prestini, E. (2017). On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting. STUDIA MATHEMATICA, 237(2), 101-117 [10.4064/sm8182-10-2016].
Prestini, E
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact