We consider an elliptic problem of the type-Delta u=f(x,u u=0 in Omega on Gamma(1) partial derivative u/partial derivative v = g(x, u) on Gamma(2)where O is a bounded Lipschitz domain in R-N with a cylindrical symmetry, nu stands for the outer normal and partial derivative Omega = (Gamma(1)) over bar boolean OR (Gamma(2)) over bar.Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem. As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem.As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem-Delta w(j) + c(x)w(j) = lambda(j)w(j) in Omega on Gamma(1) partial derivative wj/partial derivative v + d(x)w(j) on Gamma(2)For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L-2(Omega) x L-2 (Gamma(2)).

Damascelli, L., Pacella, F. (2019). Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 149(2), 305-324 [10.1017/prm.2018.29].

Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions

Damascelli L.;
2019-01-01

Abstract

We consider an elliptic problem of the type-Delta u=f(x,u u=0 in Omega on Gamma(1) partial derivative u/partial derivative v = g(x, u) on Gamma(2)where O is a bounded Lipschitz domain in R-N with a cylindrical symmetry, nu stands for the outer normal and partial derivative Omega = (Gamma(1)) over bar boolean OR (Gamma(2)) over bar.Under a Morse index condition, we prove cylindrical symmetry results for solutions of the above problem. As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem.As an intermediate step, we relate the Morse index of a solution of the nonlinear problem to the eigenvalues of the following linear eigenvalue problem-Delta w(j) + c(x)w(j) = lambda(j)w(j) in Omega on Gamma(1) partial derivative wj/partial derivative v + d(x)w(j) on Gamma(2)For this one, we construct sequences of eigenvalues and provide variational characterization of them, following the usual approach for the Dirichlet case, but working in the product Hilbert space L-2(Omega) x L-2 (Gamma(2)).
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
mixed elliptic problems; nonlinear boundary conditions; symmetry; maximum principle; Morse index
Damascelli, L., Pacella, F. (2019). Morse index and symmetry for elliptic problems with nonlinear mixed boundary conditions. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 149(2), 305-324 [10.1017/prm.2018.29].
Damascelli, L; Pacella, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
DamPacRoyalSocEd2019.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 269.68 kB
Formato Adobe PDF
269.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215621
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact