We define a class of compact homogeneous CR manifolds which are bases of Mostow fibrations having total spaces equal to their canonical complex realizations and Hermitian fibers. This is used to establish isomorphisms between their tangential Cauchy-Riemann cohomology groups and the corresponding Dolbeault cohomology groups of the embeddings.

Marini, S., Nacinovich, M. (2018). Mostow’s fibration for canonical embeddings of compact homogeneous CR manifolds. RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA, 140, 1-43 [10.4171/RSMUP/1].

Mostow’s fibration for canonical embeddings of compact homogeneous CR manifolds

Nacinovich M.
2018-01-01

Abstract

We define a class of compact homogeneous CR manifolds which are bases of Mostow fibrations having total spaces equal to their canonical complex realizations and Hermitian fibers. This is used to establish isomorphisms between their tangential Cauchy-Riemann cohomology groups and the corresponding Dolbeault cohomology groups of the embeddings.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Homogeneous CR-manifold; CR-embedding; Mostow fibration; Matsuki duality; tangential Cauchy-Riemann complex; Dolbeault cohomology
Marini, S., Nacinovich, M. (2018). Mostow’s fibration for canonical embeddings of compact homogeneous CR manifolds. RENDICONTI DEL SEMINARIO MATEMATICO DELL'UNIVERSITA' DI PADOVA, 140, 1-43 [10.4171/RSMUP/1].
Marini, S; Nacinovich, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Marini-Nacinovich-2018.pdf

solo utenti autorizzati

Descrizione: file .pdf
Licenza: Copyright dell'editore
Dimensione 232.02 kB
Formato Adobe PDF
232.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact