A local approximation study is presented for hierarchical spline spaces. Such spaces are composed of a hierarchy of nested spaces and provide a flexible framework for local refinement in any dimensionality. We provide approximation estimates for general hierarchical quasi-interpolants expressed in terms of the truncated hierarchical basis. Under some mild assumptions, we prove that such hierarchical quasi-interpolants and their derivatives possess optimal local approximation power in the general q-norm with 1≤q≤∞. In addition, we detail a specific family of hierarchical quasi-interpolants defined on uniform hierarchical meshes in any dimensionality. The construction is based on cardinal B-splines of degree p and central factorial numbers of the first kind. It guarantees polynomial reproduction of degree p and it requires only function evaluations at grid points (odd p) or half-grid points (even p). This results in good approximation properties at a very low cost, and is illustrated with some numerical experiments.
Speleers, H. (2017). Hierarchical spline spaces: quasi-interpolants and local approximation estimates. ADVANCES IN COMPUTATIONAL MATHEMATICS, 43(2), 235-255 [10.1007/s10444-016-9483-y].
Hierarchical spline spaces: quasi-interpolants and local approximation estimates
Speleers H.
2017-04-01
Abstract
A local approximation study is presented for hierarchical spline spaces. Such spaces are composed of a hierarchy of nested spaces and provide a flexible framework for local refinement in any dimensionality. We provide approximation estimates for general hierarchical quasi-interpolants expressed in terms of the truncated hierarchical basis. Under some mild assumptions, we prove that such hierarchical quasi-interpolants and their derivatives possess optimal local approximation power in the general q-norm with 1≤q≤∞. In addition, we detail a specific family of hierarchical quasi-interpolants defined on uniform hierarchical meshes in any dimensionality. The construction is based on cardinal B-splines of degree p and central factorial numbers of the first kind. It guarantees polynomial reproduction of degree p and it requires only function evaluations at grid points (odd p) or half-grid points (even p). This results in good approximation properties at a very low cost, and is illustrated with some numerical experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.