We discuss local Hermite interpolation by quintic Powell-Sabin splines represented in a normalized B-spline basis. We derive explicit formulae for the spline coefficients in this B-spline representation to interpolate given Hermite data. As part of the analysis, we show how tensor algebra can be used to describe polynomials in Bernstein-Bezier form and to simplify their manipulation.

Speleers, H. (2012). Interpolation with quintic Powell-Sabin splines. APPLIED NUMERICAL MATHEMATICS, 62(5), 620-635 [10.1016/j.apnum.2012.01.008].

Interpolation with quintic Powell-Sabin splines

Speleers H.
2012-05-01

Abstract

We discuss local Hermite interpolation by quintic Powell-Sabin splines represented in a normalized B-spline basis. We derive explicit formulae for the spline coefficients in this B-spline representation to interpolate given Hermite data. As part of the analysis, we show how tensor algebra can be used to describe polynomials in Bernstein-Bezier form and to simplify their manipulation.
mag-2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Hermite interpolation; Quintic Powell-Sabin splines; macro-elements; Normalized B-spline representation
Speleers, H. (2012). Interpolation with quintic Powell-Sabin splines. APPLIED NUMERICAL MATHEMATICS, 62(5), 620-635 [10.1016/j.apnum.2012.01.008].
Speleers, H
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact