This paper presents a multigrid algorithm for the solution of the linear systems that arise from a finite-element discretization of second-order elliptic partial differential equations with Powell-Sabin (PS) splines. We show that the method yields a uniform convergence in the l2-norm which is independent of the mesh size. We also briefly consider the use of PS splines for the fourth-order biharmonic problem.

Speleers, H., Dierckx, P., Vandewalle, S. (2008). Multigrid methods with Powell-Sabin splines. IMA JOURNAL OF NUMERICAL ANALYSIS, 28(4), 888-908 [10.1093/imanum/drm031].

Multigrid methods with Powell-Sabin splines

Speleers H.;
2008-10-01

Abstract

This paper presents a multigrid algorithm for the solution of the linear systems that arise from a finite-element discretization of second-order elliptic partial differential equations with Powell-Sabin (PS) splines. We show that the method yields a uniform convergence in the l2-norm which is independent of the mesh size. We also briefly consider the use of PS splines for the fourth-order biharmonic problem.
ott-2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Powell-Sabin splines; Multigrid; Approximation
Speleers, H., Dierckx, P., Vandewalle, S. (2008). Multigrid methods with Powell-Sabin splines. IMA JOURNAL OF NUMERICAL ANALYSIS, 28(4), 888-908 [10.1093/imanum/drm031].
Speleers, H; Dierckx, P; Vandewalle, S
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact