We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and sufficiently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.
Bertsch, M., Smarrazzo, F., Terracina, A., Tesei, A. (2019). A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws,. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 30(1), 137-168 [10.4171/RLM/839].
A uniqueness criterion for measure-valued solutions of scalar hyperbolic conservation laws,
Bertsch M.
;Tesei A.
2019-01-01
Abstract
We prove existence and uniqueness of Radon measure-valued solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, the initial data being a finite superposition of Dirac masses and the flux being Lipschitz continuous, bounded and sufficiently smooth. The novelty of the paper is the introduction of a compatibility condition which, combined with standard entropy conditions, guarantees uniqueness.File | Dimensione | Formato | |
---|---|---|---|
Bertsch_Lincei_2019.pdf
solo utenti autorizzati
Descrizione: articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
229.21 kB
Formato
Adobe PDF
|
229.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.