In this paper we prove that, given a n x n symmetric matrix A, a matrix V with r orthonormal columns and an integer m = 1, mr = n, it is possible to devise a matrix algebra L such that, denoting by LA the matrix closest to A from L in the Frobenius norm, one has Lj AV = Aj V for j = 0,..., m -1. The algebra L is the space of all matrices that are diagonalized by a given orthogonal matrix L. We show, moreover, that L can be constructed as the product of mr Householder matrices, so thatL, formr n, is a low complexity matrix algebra. The new theoretical results here introduced allow to investigate newpossible preconditioners LA for the ConjugateGradient method and new quasi-Newton algorithms suitable to solve large scale optimization problems.

Cipolla, S., Di Fiore, C., Zellini, P. (2019). Low complexity matrix projections preserving actions on vectors. CALCOLO, 56(2) [10.1007/s10092-019-0305-8].

Low complexity matrix projections preserving actions on vectors

Di Fiore C.;Zellini P.
2019-06-01

Abstract

In this paper we prove that, given a n x n symmetric matrix A, a matrix V with r orthonormal columns and an integer m = 1, mr = n, it is possible to devise a matrix algebra L such that, denoting by LA the matrix closest to A from L in the Frobenius norm, one has Lj AV = Aj V for j = 0,..., m -1. The algebra L is the space of all matrices that are diagonalized by a given orthogonal matrix L. We show, moreover, that L can be constructed as the product of mr Householder matrices, so thatL, formr n, is a low complexity matrix algebra. The new theoretical results here introduced allow to investigate newpossible preconditioners LA for the ConjugateGradient method and new quasi-Newton algorithms suitable to solve large scale optimization problems.
giu-2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Arnoldi method; Block-Krylov spaces; direction preserving projections; matrix projections; unitary decomposition by householder matrices
Cipolla, S., Di Fiore, C., Zellini, P. (2019). Low complexity matrix projections preserving actions on vectors. CALCOLO, 56(2) [10.1007/s10092-019-0305-8].
Cipolla, S; Di Fiore, C; Zellini, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cipCipolla2019_Article_LowComplexityMatrixProjections.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact