We propose a tensor structured preconditioner for the tensor train GMRES algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once formulation of time-dependent fractional partial differential equations discretized in time by linear multistep formulas used in boundary value form and in space by finite volumes. Numerical experiments show that the proposed preconditioner is efficient for very large problems and is competitive, in particular with respect to the AMEn algorithm.

Bertaccini, D., Durastante, F. (2019). Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. APPLIED MATHEMATICS LETTERS, 95, 92-97 [10.1016/j.aml.2019.03.028].

Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation

Bertaccini D.
;
2019-01-01

Abstract

We propose a tensor structured preconditioner for the tensor train GMRES algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once formulation of time-dependent fractional partial differential equations discretized in time by linear multistep formulas used in boundary value form and in space by finite volumes. Numerical experiments show that the proposed preconditioner is efficient for very large problems and is competitive, in particular with respect to the AMEn algorithm.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Finite volumes; Fractional diffusion equations; Structured preconditioners in tensor form; Tensor trains
Bertaccini, D., Durastante, F. (2019). Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. APPLIED MATHEMATICS LETTERS, 95, 92-97 [10.1016/j.aml.2019.03.028].
Bertaccini, D; Durastante, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BertacciniDurastanteAML2019.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 689.49 kB
Formato Adobe PDF
689.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/215042
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact