Generalizing the continuous rank function of Barja-Pardini-Stoppino, in this paper we consider cohomological rank functions of Q-twisted (complexes of) coherent sheaves on abelian varieties. They satisfy a natural transformation formula with respect to the Fourier-Mukai-Poincaré transform, which has several consequences. In many concrete geometric contexts these functions provide useful invariants. We illustrate this with two different applications, the first one to GV-subschemes and the second one to multiplication maps of global sections of ample line bundles on abelian varieties.

Jiang, Z., Pareschi, G. (2020). Cohomological rank functions on abelian varieties. ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE, 53, 815-846 [10.24033/asens.2435].

Cohomological rank functions on abelian varieties

Pareschi, G
2020-01-01

Abstract

Generalizing the continuous rank function of Barja-Pardini-Stoppino, in this paper we consider cohomological rank functions of Q-twisted (complexes of) coherent sheaves on abelian varieties. They satisfy a natural transformation formula with respect to the Fourier-Mukai-Poincaré transform, which has several consequences. In many concrete geometric contexts these functions provide useful invariants. We illustrate this with two different applications, the first one to GV-subschemes and the second one to multiplication maps of global sections of ample line bundles on abelian varieties.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Fourier-Mukai transform; Abelian Varieties
https://smf.emath.fr/publications/fonctions-rang-cohomologiques-sur-les-varietes-abeliennes
Jiang, Z., Pareschi, G. (2020). Cohomological rank functions on abelian varieties. ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE, 53, 815-846 [10.24033/asens.2435].
Jiang, Z; Pareschi, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
coho.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 327.53 kB
Formato Adobe PDF
327.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/214965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact