We revisit an inverse first-passage time (IFPT) problem, in the cases of fractional Brownian motion, and time-changed Brownian motion. Let $X(t)$ be a one dimensional continuous stochastic process starting from a random position $eta$ , let $S(t)$ be an assigned continuous boundary, such that $ eta ge S(0)$ with probability one, and F an assigned distribution function. The IFPT problem here considered consists in finding the distribution of $eta$ such that the first-passage time of X(t) below S(t) has distribution F. We study this IFPT problem for fractional Brownian motion and a constant boundary $S(t)=S$; we also obtain some extension to other Gaussian processes, for one, or two, time dependent boundaries.

Abundo, M. (2019). An inverse first-passage problem revisited: the case of fractional Brownian motion, and time-changed Brownian motion. STOCHASTIC ANALYSIS AND APPLICATIONS, 1-9 [10.1080/07362994.2019.1608834].

An inverse first-passage problem revisited: the case of fractional Brownian motion, and time-changed Brownian motion

Abundo M.
2019-01-01

Abstract

We revisit an inverse first-passage time (IFPT) problem, in the cases of fractional Brownian motion, and time-changed Brownian motion. Let $X(t)$ be a one dimensional continuous stochastic process starting from a random position $eta$ , let $S(t)$ be an assigned continuous boundary, such that $ eta ge S(0)$ with probability one, and F an assigned distribution function. The IFPT problem here considered consists in finding the distribution of $eta$ such that the first-passage time of X(t) below S(t) has distribution F. We study this IFPT problem for fractional Brownian motion and a constant boundary $S(t)=S$; we also obtain some extension to other Gaussian processes, for one, or two, time dependent boundaries.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
First-passage time; inverse first-passage problem; fractional Brownian motion
Abundo, M. (2019). An inverse first-passage problem revisited: the case of fractional Brownian motion, and time-changed Brownian motion. STOCHASTIC ANALYSIS AND APPLICATIONS, 1-9 [10.1080/07362994.2019.1608834].
Abundo, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
abundo19a.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/214937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact