We investigate the application of immersed boundary approaches in isogeometric analysis for the treatment of flexible domains by suitably incorporating trimming operations and geometry mappings. The considered immersed-isogeometric model is framed in the context of an automatic adaptive scheme to solve linear elasticity problems. The proposed method leads to a symmetric system of linear equations, and it is essentially free of user-defined penalty and stabilization parameters. Adaptivity is achieved by employing hierarchically nested spline spaces. In particular, we focus on truncated hierarchical box splines (THBox-splines) defined over regular triangulations. Several numerical examples demonstrate the optimal convergence of the adaptive scheme.

Giannelli, C., Kanduc, T., Pelosi, F., Speleers, H. (2019). An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 349, 410-423 [10.1016/j.cam.2018.09.027].

An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines

Pelosi F.;Speleers H.
2019-01-01

Abstract

We investigate the application of immersed boundary approaches in isogeometric analysis for the treatment of flexible domains by suitably incorporating trimming operations and geometry mappings. The considered immersed-isogeometric model is framed in the context of an automatic adaptive scheme to solve linear elasticity problems. The proposed method leads to a symmetric system of linear equations, and it is essentially free of user-defined penalty and stabilization parameters. Adaptivity is achieved by employing hierarchically nested spline spaces. In particular, we focus on truncated hierarchical box splines (THBox-splines) defined over regular triangulations. Several numerical examples demonstrate the optimal convergence of the adaptive scheme.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Box splines; Immersed boundary method; Isogeometric analysis; Linear elasticity; Local refinement; Truncated hierarchical splines; Weak boundary conditions
Giannelli, C., Kanduc, T., Pelosi, F., Speleers, H. (2019). An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 349, 410-423 [10.1016/j.cam.2018.09.027].
Giannelli, C; Kanduc, T; Pelosi, F; Speleers, H
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ImmBoundaryMethodsTHBsplineLinearElasticity_GPST_JCAM_2019.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/214800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact