In the hyperbolic disc (or, more generally, in real hyperbolic spaces) we consider the horocyclic Radon transform R and the geodesic Radon transform X. Composition with their respective adjoint operators yields two convolution operators on the disc (with respect to the hyperbolic measure). We describe their convolution kernels in comparison with those of the corresponding operators on a homogeneous tree.

Berenstein, C.a., Tarabusi, E.c., Cohen, J.m., & Picardello, A.m. (1991). Integral Geometry on Trees. AMERICAN JOURNAL OF MATHEMATICS, 113(3), 441-470 [10.2307/2374835].

Integral Geometry on Trees

Picardello, A. M.
1991

Abstract

In the hyperbolic disc (or, more generally, in real hyperbolic spaces) we consider the horocyclic Radon transform R and the geodesic Radon transform X. Composition with their respective adjoint operators yields two convolution operators on the disc (with respect to the hyperbolic measure). We describe their convolution kernels in comparison with those of the corresponding operators on a homogeneous tree.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - Analisi Matematica
eng
Berenstein, C.a., Tarabusi, E.c., Cohen, J.m., & Picardello, A.m. (1991). Integral Geometry on Trees. AMERICAN JOURNAL OF MATHEMATICS, 113(3), 441-470 [10.2307/2374835].
Berenstein, Ca; Tarabusi, Ec; Cohen, Jm; Picardello, Am
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Beren_Cas_Cohen_Picard-XRay_Amer.J.Math(ppt).pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 227.8 kB
Formato Adobe PDF
227.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/214664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact