Fock (1997 (arXiv:dg-ga/9702018v3); Fock et al 2007 Handbook of Teichmüller Theory (Zürich: European Mathematical Society)) introduced an interesting function related to Markov numbers. We explain its relation to Federer–Gromov's stable norm and Mather's -function, and use this to study its properties. We prove that and its natural generalisations are differentiable at every irrational x and non-differentiable otherwise, by exploiting the relation with length of simple closed geodesics on the punctured or one-holed tori with the hyperbolic metric and the results by Bangert (1994 Calculus Variations Partial Differ. Equ. 2 49–63) and McShane–Rivin (1995 C. R. Acad. Sci. Paris I 320).

Sorrentino, A., Veselov, A.p. (2019). Markov numbers, Mather’s beta function and stable norm. NONLINEARITY, 32(6), 2147-2156 [10.1088/1361-6544/ab047d].

Markov numbers, Mather’s beta function and stable norm

Alfonso Sorrentino
;
2019-05-01

Abstract

Fock (1997 (arXiv:dg-ga/9702018v3); Fock et al 2007 Handbook of Teichmüller Theory (Zürich: European Mathematical Society)) introduced an interesting function related to Markov numbers. We explain its relation to Federer–Gromov's stable norm and Mather's -function, and use this to study its properties. We prove that and its natural generalisations are differentiable at every irrational x and non-differentiable otherwise, by exploiting the relation with length of simple closed geodesics on the punctured or one-holed tori with the hyperbolic metric and the results by Bangert (1994 Calculus Variations Partial Differ. Equ. 2 49–63) and McShane–Rivin (1995 C. R. Acad. Sci. Paris I 320).
mag-2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MAT/03 - GEOMETRIA
English
https://iopscience.iop.org/article/10.1088/1361-6544/ab047d/meta
Sorrentino, A., Veselov, A.p. (2019). Markov numbers, Mather’s beta function and stable norm. NONLINEARITY, 32(6), 2147-2156 [10.1088/1361-6544/ab047d].
Sorrentino, A; Veselov, Ap
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Sorrentino_2019_Nonlinearity_32_2147.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 686.16 kB
Formato Adobe PDF
686.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/213661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact