For a time-homogenous one-dimensional diffusion process X (t), we investigate the distribution of the first instant, after a given time r, at which X (t) exceeds its maximum in the interval [0, r], generalizing a result of Papanicolaou, holding for Brownian motion
Abundo, M. (2018). The arctangent law for a certain random time related to one-dimensional diffusions. STOCHASTIC ANALYSIS AND APPLICATIONS, 36(1), 181-187 [10.1080/07362994.2017.1387565].
The arctangent law for a certain random time related to one-dimensional diffusions.
Abundo Mario
2018-01-01
Abstract
For a time-homogenous one-dimensional diffusion process X (t), we investigate the distribution of the first instant, after a given time r, at which X (t) exceeds its maximum in the interval [0, r], generalizing a result of Papanicolaou, holding for Brownian motionFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
abundo18a.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
360.51 kB
Formato
Adobe PDF
|
360.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.