Surface chemistry and micro-nanoscale topography of biomaterials can significantly influence tissue engineering and cell biology. In this study, polystyrene (PS) Petri dishes were subjected to microtexturing by compression molding process, which resulted in three-dimensional (3D) microscale surface topographies. Three different micropatterned surfaces were fabricated using bronze sintered molds with different mean pore pitch sizes. The surface changes and the morphological aspects were analyzed by 3D surface analyzer. The dishes were then used to investigate the cell behavior of Mouse Embryonic Fibroblasts (MEF) P4 cells. The surface micropatterning have affected in different ways the MEF cell adhesion and proliferation, related to the morphological changes in comparison with unmodified PS. At the increasing of the sintered particle dimensions of the mold, the cavities dimensions on the molded Petri increase and also the cells adhesion in the cavities seems to increase independently from the roughness inside them.

Bellisario, D., Quadrini, F., Santolim, G., Tedde, G.m., Caputo, V., Spitalieri, P., et al. (2018). Effects of micro-textured polystyrene substrates by compression molding on cell adhesion and proliferation. MATERIALE PLASTICE, 55, 502-506.

Effects of micro-textured polystyrene substrates by compression molding on cell adhesion and proliferation

Bellisario, Denise;Quadrini, Fabrizio;Santolim, Gustavo;Tedde, Giovanni Matteo;Caputo, Valerio;Spitalieri, Paola;Sangiuolo, Federica;Santo, Loredana
2018

Abstract

Surface chemistry and micro-nanoscale topography of biomaterials can significantly influence tissue engineering and cell biology. In this study, polystyrene (PS) Petri dishes were subjected to microtexturing by compression molding process, which resulted in three-dimensional (3D) microscale surface topographies. Three different micropatterned surfaces were fabricated using bronze sintered molds with different mean pore pitch sizes. The surface changes and the morphological aspects were analyzed by 3D surface analyzer. The dishes were then used to investigate the cell behavior of Mouse Embryonic Fibroblasts (MEF) P4 cells. The surface micropatterning have affected in different ways the MEF cell adhesion and proliferation, related to the morphological changes in comparison with unmodified PS. At the increasing of the sintered particle dimensions of the mold, the cavities dimensions on the molded Petri increase and also the cells adhesion in the cavities seems to increase independently from the roughness inside them.
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-IND/16 - Tecnologie e Sistemi di Lavorazione
eng
Cell adhesion; Compression molding; Micro-textured surfaces; Polystyrene substrate; Proliferation; Chemistry (all); Mechanics of Materials; Polymers and Plastics; Materials Chemistry2506 Metals and Alloys
http://www.revmaterialeplastice.ro/pdf/BELLISARIO%204%2018.pdf
Bellisario, D., Quadrini, F., Santolim, G., Tedde, G.m., Caputo, V., Spitalieri, P., et al. (2018). Effects of micro-textured polystyrene substrates by compression molding on cell adhesion and proliferation. MATERIALE PLASTICE, 55, 502-506.
Bellisario, D; Quadrini, F; Santolim, G; Tedde, Gm; Caputo, V; Spitalieri, P; Sangiuolo, F; Santo, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/212259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact