We present an asymptotic description of local minimization problems, and of quasistatic and dynamic evolutions of discrete one-dimensional scaled Perona-Malik functionals. The scaling is chosen in such a way that these energies Γ-converge to the Mumford-Shah functional by a result by Morini and Negri. This continuum approximation still provides a good description of quasistatic and gradient-flow type evolutions, while it must be suitably corrected to maintain the pattern of local minima and to account for long-time evolution.

Braides, A., Vallocchia, V. (2018). Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals. ACTA APPLICANDAE MATHEMATICAE, 156(1), 79-107 [10.1007/s10440-018-0155-4].

Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals

Braides, Andrea
;
VALLOCCHIA, VALERIO
2018-01-01

Abstract

We present an asymptotic description of local minimization problems, and of quasistatic and dynamic evolutions of discrete one-dimensional scaled Perona-Malik functionals. The scaling is chosen in such a way that these energies Γ-converge to the Mumford-Shah functional by a result by Morini and Negri. This continuum approximation still provides a good description of quasistatic and gradient-flow type evolutions, while it must be suitably corrected to maintain the pattern of local minima and to account for long-time evolution.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Fracture mechanics; Image processing; Local minima; Minimizing movements; Perona-Malik functional; Variational evolution; Γ-convergence; Applied Mathematics
http://www.kluweronline.com/issn/0167-8019/
Braides, A., Vallocchia, V. (2018). Static, Quasistatic and Dynamic Analysis for Scaled Perona-Malik Functionals. ACTA APPLICANDAE MATHEMATICAE, 156(1), 79-107 [10.1007/s10440-018-0155-4].
Braides, A; Vallocchia, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BV2016.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/211686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact