Real-time intraoperative imaging for brain tumor surgery is crucial for achieving complete resection. We are developing novel lipid-based microbubbles (MBs), engineered with specific ligands, which are able to interact with the integrins overexpressed in the endothelium of the brain tumor vasculature. These MBs are designed to visualize the tumor and to carry therapeutic molecules into the tumor tissue, preserving the ultrasound acoustic properties of the starting plain lipid MBs. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of plain MBs and MBs engineered for targeting and nearinfrared fluorescence visualization at two time-points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-ICG, (3) MB-RGD, and (4) MB-ICG-RGD]. No mortality occurred during the 7-day study period in any of the dosing groups. All animals demonstrated a body weight gain during the study period. Minor, mostly reversible changes in hematological and biochemical analysis were observed in some of the treated animals. All changes were reversible by the 7-day time-point. Histopathology examination in the high-dose animals showed development of foreign body granulomatous inflammation. We concluded that the low-dose tested items appear to be safe. The results allow for proceeding to clinical testing of the product.

Paradossi, G., Oddo, L., Cerroni, B., Ben-Harush, C., Ariel, E., Di Meco, F., et al. (2019). In vivo toxicity study of engineered lipid microbubbles in rodents. ACS OMEGA, 4(3), 5526-5533 [10.1021/acsomega.8b03161].

In vivo toxicity study of engineered lipid microbubbles in rodents

Paradossi, G;Oddo, L;Cerroni, B;
2019-03-19

Abstract

Real-time intraoperative imaging for brain tumor surgery is crucial for achieving complete resection. We are developing novel lipid-based microbubbles (MBs), engineered with specific ligands, which are able to interact with the integrins overexpressed in the endothelium of the brain tumor vasculature. These MBs are designed to visualize the tumor and to carry therapeutic molecules into the tumor tissue, preserving the ultrasound acoustic properties of the starting plain lipid MBs. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of plain MBs and MBs engineered for targeting and nearinfrared fluorescence visualization at two time-points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-ICG, (3) MB-RGD, and (4) MB-ICG-RGD]. No mortality occurred during the 7-day study period in any of the dosing groups. All animals demonstrated a body weight gain during the study period. Minor, mostly reversible changes in hematological and biochemical analysis were observed in some of the treated animals. All changes were reversible by the 7-day time-point. Histopathology examination in the high-dose animals showed development of foreign body granulomatous inflammation. We concluded that the low-dose tested items appear to be safe. The results allow for proceeding to clinical testing of the product.
19-mar-2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/02 - CHIMICA FISICA
English
This work was funded by the EU Seventh Framework Programme FP7/2007-2013 ‘‘TheraGlio” (grant agreement no. 602923).
Paradossi, G., Oddo, L., Cerroni, B., Ben-Harush, C., Ariel, E., Di Meco, F., et al. (2019). In vivo toxicity study of engineered lipid microbubbles in rodents. ACS OMEGA, 4(3), 5526-5533 [10.1021/acsomega.8b03161].
Paradossi, G; Oddo, L; Cerroni, B; Ben-Harush, C; Ariel, E; Di Meco, F; Ram, Z; Grossman, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
acsomega.8b03161.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 7.93 MB
Formato Adobe PDF
7.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/211221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact