1. The metabolism and cytotoxicity of the antimicrobial nitrofuran drug furazolidone have been studied in Caco-2, HEp-2 and V79 cell lines. Free radical production, metabolite pattern, formation of bound residues, inhibition of cellular replication and protection by the antioxidant glutathione were compared for the three cell lines. 2. All three cell lines produced the same nitro-anion radical with similar kinetics. Little further metabolic breakdown was observed in V79 cells, whereas Caco-2 and HEp-2 cells showed extensive degradation of furazolidone, but with different end patterns. 3. Under hypoxic conditions, the colony-forming ability was extensively impaired in HEp-2 cells whereas the other two cell lines were less affected, suggesting that irreversible damage to DNA occurred prevalently in HEp-2 cells. In V79 cells the absence of oxygen caused a 25-fold increase in the formation of protein-bound residues. 4. Brief exposure to furazolidone caused a 50% loss of endogenous glutathione in Caco-2 cells, but no loss could be detected in V79 and HEp-2 cells. Consistently, when glutathione was depleted by buthionine-[S,R]-sulphoximine (BSO) and diethylmaleate (DEM) treatment, the viability of V79 and HEp-2 cells was minimally affected by furazolidone, whereas that of Caco-2 cells was substantially reduced. 5. It is concluded that the cytotoxicity of furazolidone in these cell lines can be exerted by a number of different mechanisms, possibly related to different metabolic pathways. The cytotoxicity of nitrofuran drugs, therefore, cannot be ascribed to a single toxic intermediate, but in Caco-2 cells furazolidone is extensively metabolized and detoxified by GSH, in V79 is only partially activated and then bound to proteins, whereas in HEp-2, once activated, may react with DNA.
De Angelis, I., Rossi, L., Pedersen, J.z., Vignoli, A.l., Vincentini, O., Hoogenboom, L., et al. (1999). Metabolism of furazolidone: Alternative pathways and modes of toxicity in different cell lines. XENOBIOTICA, 29(11), 1157-1169 [10.1080/004982599238029].
Metabolism of furazolidone: Alternative pathways and modes of toxicity in different cell lines
Rossi L.;Pedersen J. Z.;
1999-01-01
Abstract
1. The metabolism and cytotoxicity of the antimicrobial nitrofuran drug furazolidone have been studied in Caco-2, HEp-2 and V79 cell lines. Free radical production, metabolite pattern, formation of bound residues, inhibition of cellular replication and protection by the antioxidant glutathione were compared for the three cell lines. 2. All three cell lines produced the same nitro-anion radical with similar kinetics. Little further metabolic breakdown was observed in V79 cells, whereas Caco-2 and HEp-2 cells showed extensive degradation of furazolidone, but with different end patterns. 3. Under hypoxic conditions, the colony-forming ability was extensively impaired in HEp-2 cells whereas the other two cell lines were less affected, suggesting that irreversible damage to DNA occurred prevalently in HEp-2 cells. In V79 cells the absence of oxygen caused a 25-fold increase in the formation of protein-bound residues. 4. Brief exposure to furazolidone caused a 50% loss of endogenous glutathione in Caco-2 cells, but no loss could be detected in V79 and HEp-2 cells. Consistently, when glutathione was depleted by buthionine-[S,R]-sulphoximine (BSO) and diethylmaleate (DEM) treatment, the viability of V79 and HEp-2 cells was minimally affected by furazolidone, whereas that of Caco-2 cells was substantially reduced. 5. It is concluded that the cytotoxicity of furazolidone in these cell lines can be exerted by a number of different mechanisms, possibly related to different metabolic pathways. The cytotoxicity of nitrofuran drugs, therefore, cannot be ascribed to a single toxic intermediate, but in Caco-2 cells furazolidone is extensively metabolized and detoxified by GSH, in V79 is only partially activated and then bound to proteins, whereas in HEp-2, once activated, may react with DNA.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.