In the central nervous system (CNS), endocannabinoids are identified mainly as two endogenous lipids: anandamide, the ethanolamide of arachidonic acid, and 2-arachidonoylglycerol (2-AG). Endocannabinoids are known to retrogradely inhibit presynaptic transmitter release; however it is demonstrated that they are also involved in slow self-inhibition (SSI) of layer V low-threshold spiking (LTS) interneurons in somatosensory cortex. SSI is induced by repetitive firing in LTS cells, which can express either cholecystokinin or somatostatin. SSI is triggered by an endocannabinoid-dependent activation of a prolonged somatodendritic K+ conductance and associated hyperpolarization in the same cell. The synthesis of both endocannabinoids is dependent on elevated [Ca2+]i such as occurs during sustained neuronal activity. To establish whether 2-AG mediates autocrine LTS-SSI, we blocked its biosynthesis from phospholipase C (PLC) and diacylglycerol lipases (DAGLs), preventing the SSI. Moreover, metabotropic glutamate receptor-dependent activation of PLC produced a long-lasting hyperpolarization which was prevented by the cannabinoid receptor type 1 (CB1R) antagonist AM-251, as well as byPLC and DAGL inhibitors. The loss of SSI in the presence of intracellular DAGL blockers confirms that endocannabinoid production occurs in the same interneuron undergoing the persistent hyperpolarization. Since DAGLs produce no endocannabinoid other than 2-AG, these results identify this compound as the autocrine mediator responsible for the postsynaptic slow self-inhibition of neocortical LTS interneurons. Moreover, here we show that SSI also occurs in a significant percentage (~30%) of neocortical layer II/III glutamatergic pyramidal neurons. SSI was prevented by AM-251 and in CB1-/- mice. Similarly, exogenously application of cannabinoids mimicked SSI in a corresponding percentage of pyramidal neurons, proving functional somatodendritic CB1R expression in glutamatergic cells. This self-induced endocannabinoid modulation of pyramidal neuron excitability resulted from an autocrine action of endocannabinoids, as SSI was prevented by intracellular blockade of endocannabinoid synthesis. Interestingly, pyramidal neurons exhibiting SSI showed a significant less branched and longer apical dendrite than SSI-negative neurons, suggesting that endocannabinoid-mediated SSI can identify an anatomical subtype of pyramidal neocortical neurons. Preliminary results indicate the existence of SSI also in a fraction of neocortical layer V pyramidal neurons, and suggest a bidirectional long-term plasticity of GABAergic perisomatic inhibition in neocortical layer II/III vs layer V pyramidal neurons. In conclusion, our results suggest a homeostatic self-regulation of a glutamatergic network within cortical circuits, with important possible implications for normal and pathological operations of the neocortex.
Nel sistema nervoso centrale, gli endocannabinoidi sono rappresentati principalmente da due lipidi: l’anandamide, l’etanolamide dell’acido arachidonico, e il 2-arachidonilglicerolo (2-AG). E’ accertato che gli endocannabinoidi inibiscono in modo retrogrado il rilascio presinaptico di trasmettitori; è peraltro dimostrato il loro coinvolgimento nel fenomeno inibitorio detto slow self-inhibition (SSI) in interneuroni low-threshold spiking (LTS) della corteccia somatosensoriale. L’SSI è indotta in seguito a treni di potenziali d’azione ripetuti in cellule LTS, che esprimono colecistochinina o somatostatina. La SSI è generata dall’attivazione prolungata di un canale K+ ed è associata ad iperpolarizzazione nella stessa cellula. La sintesi di entrambi i cannabinoidi è dipendente dall’aumento della [Ca2+]i come accade durante una elevata attività neuronale. Per verificare se il 2-AG media la SSI in modo autocrino in cellule LTS, abbiamo bloccato la sua biosintesi a partire dalla fosfolipasi C (PLC) e da diacil-glicerolo lipasi (DAGLs). Queste manipolazioni hanno impedito l’insorgenza della SSI. Inoltre, l’attivazione di PLC mediata da recettori metabotropici del glutammato ha prodotto una prolungata iperpolarizzazione, la quale è stata inibita dall’antagonista del recettore cannabinoide di tipo 1 (CB1R) AM-251, e dagli inibitori di PLC e DAGL. La scomparsa della SSI in presenza di bloccanti intracellulari della DAGL conferma che la produzione di endocannabinoidi avviene nello stesso interneurone che va incontro a persistente iperpolarizzazione. Poiché le DAGLs non producono cannabinoidi se non 2-AG, questi risultati identificano tale composto come il mediatore autocrino responsabile della slow self-inhibition postsinaptica in interneuroni corticali LTS. Abbiamo inoltre dimostrato che la SSI è espressa anche da una significativa percentuale (~30%) di neuroni piramidali glutamatergici dello strato II/III della neocorteccia. La SSI è asssente in presenza di AM-251 e in topi CB-/-. Allo stesso modo, la somministrazione esogena di cannabinoidi mima la SSI in una percentuale equivalente di neuroni piramidali, provando un’espressione funzionale somatodendritica di CB1R in cellule glutammatergiche. Questa modulazione autoindotta dell’eccitabilità di neuroni piramidali è generata da un’azione autocrina di endocannabinoidi, poiché la SSI è inibita dal blocco intracellulare della loro sintesi. E’ interessante osservare che i neuroni piramidali che esprimono SSI mostrano un dendrite apicale più lungo e meno ramificato, suggerendo che la SSI può identificare un sottogruppo anatomicamente distinto di neuroni piramidali neocorticali. Risultati preliminari indicano l’esistenza della SSI anche in una frazione di neuroni piramidali dello strato V, e suggeriscono una bidirezionale plasticità a lungo termine della trasmissione sinpatica GABAergica perisomatica in neuroni piramidali corticali dello strato II/III in confronto a quelli dello strato V. In conclusione, i nostri risultati suggeriscono un’autoregolazione omeostatica di una rete di neuroni glutammatergici all’interno dei circuiti corticali, con possibili implicazioni che sono rilevanti per l’attività della neocorteccia sia in condizioni normali che patologiche.
(2010). Endocannabinoid-mediated long-term depression of excitability and synaptic transmission in the neocortex.
Endocannabinoid-mediated long-term depression of excitability and synaptic transmission in the neocortex
PACIONI, SIMONE
2010-01-01
Abstract
In the central nervous system (CNS), endocannabinoids are identified mainly as two endogenous lipids: anandamide, the ethanolamide of arachidonic acid, and 2-arachidonoylglycerol (2-AG). Endocannabinoids are known to retrogradely inhibit presynaptic transmitter release; however it is demonstrated that they are also involved in slow self-inhibition (SSI) of layer V low-threshold spiking (LTS) interneurons in somatosensory cortex. SSI is induced by repetitive firing in LTS cells, which can express either cholecystokinin or somatostatin. SSI is triggered by an endocannabinoid-dependent activation of a prolonged somatodendritic K+ conductance and associated hyperpolarization in the same cell. The synthesis of both endocannabinoids is dependent on elevated [Ca2+]i such as occurs during sustained neuronal activity. To establish whether 2-AG mediates autocrine LTS-SSI, we blocked its biosynthesis from phospholipase C (PLC) and diacylglycerol lipases (DAGLs), preventing the SSI. Moreover, metabotropic glutamate receptor-dependent activation of PLC produced a long-lasting hyperpolarization which was prevented by the cannabinoid receptor type 1 (CB1R) antagonist AM-251, as well as byPLC and DAGL inhibitors. The loss of SSI in the presence of intracellular DAGL blockers confirms that endocannabinoid production occurs in the same interneuron undergoing the persistent hyperpolarization. Since DAGLs produce no endocannabinoid other than 2-AG, these results identify this compound as the autocrine mediator responsible for the postsynaptic slow self-inhibition of neocortical LTS interneurons. Moreover, here we show that SSI also occurs in a significant percentage (~30%) of neocortical layer II/III glutamatergic pyramidal neurons. SSI was prevented by AM-251 and in CB1-/- mice. Similarly, exogenously application of cannabinoids mimicked SSI in a corresponding percentage of pyramidal neurons, proving functional somatodendritic CB1R expression in glutamatergic cells. This self-induced endocannabinoid modulation of pyramidal neuron excitability resulted from an autocrine action of endocannabinoids, as SSI was prevented by intracellular blockade of endocannabinoid synthesis. Interestingly, pyramidal neurons exhibiting SSI showed a significant less branched and longer apical dendrite than SSI-negative neurons, suggesting that endocannabinoid-mediated SSI can identify an anatomical subtype of pyramidal neocortical neurons. Preliminary results indicate the existence of SSI also in a fraction of neocortical layer V pyramidal neurons, and suggest a bidirectional long-term plasticity of GABAergic perisomatic inhibition in neocortical layer II/III vs layer V pyramidal neurons. In conclusion, our results suggest a homeostatic self-regulation of a glutamatergic network within cortical circuits, with important possible implications for normal and pathological operations of the neocortex.File | Dimensione | Formato | |
---|---|---|---|
Tesi completa.pdf
solo utenti autorizzati
Licenza:
Non specificato
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.