The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born-Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron-vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron-vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born-Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn-Teller effect.
Gali, A., Demjan, T., Voros, M., Thiering, G., Cannuccia, E., Marini, A. (2016). Electron-vibration coupling induced renormalization in the photoemission spectrum of diamondoids. NATURE COMMUNICATIONS, 7(1), 11327 [10.1038/ncomms11327].
Electron-vibration coupling induced renormalization in the photoemission spectrum of diamondoids
Cannuccia E.;
2016-01-01
Abstract
The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born-Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron-vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron-vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born-Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn-Teller effect.File | Dimensione | Formato | |
---|---|---|---|
NatComm.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
956.51 kB
Formato
Adobe PDF
|
956.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.