In this paper, an augmented reality methodology based on the use of a low-invasiveness hand tracking device is presented. The developed methodology, allows the user to be visually immersed into an augmented scene by means of a head-mounted display. He can interact with the virtual objects without any wearable sensor using the Leap Motion Controller that is able to acquire the pose of each finger of both hands by optical triangulation without markers. In this way, the interaction between the user and the scene can be considered “natural”. The interaction between hands and objects and the assembling among objects is achieved by the modification of the Object Active Feature–Grasping Active Feature methodology, based on the use of algebraic kinematic constraint equations. The approach has been adapted to take into account the specific information coming from the tracking device. An example of implementation is reported and an experimental usability study discussed.
Valentini, P.p. (2018). Natural interface for interactive virtual assembly in augmented reality using Leap Motion Controller. INTERNATIONAL JOURNAL ON INTERACTIVE DESIGN AND MANUFACTURING, 12(4), 1157-1165 [10.1007/s12008-018-0461-0].
Natural interface for interactive virtual assembly in augmented reality using Leap Motion Controller
Valentini P. P.
2018-01-01
Abstract
In this paper, an augmented reality methodology based on the use of a low-invasiveness hand tracking device is presented. The developed methodology, allows the user to be visually immersed into an augmented scene by means of a head-mounted display. He can interact with the virtual objects without any wearable sensor using the Leap Motion Controller that is able to acquire the pose of each finger of both hands by optical triangulation without markers. In this way, the interaction between the user and the scene can be considered “natural”. The interaction between hands and objects and the assembling among objects is achieved by the modification of the Object Active Feature–Grasping Active Feature methodology, based on the use of algebraic kinematic constraint equations. The approach has been adapted to take into account the specific information coming from the tracking device. An example of implementation is reported and an experimental usability study discussed.File | Dimensione | Formato | |
---|---|---|---|
IJIDEM_Valentini2018_Article_NaturalInterfaceForInteractive.pdf
solo utenti autorizzati
Licenza:
Copyright dell'editore
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.