We obtain a generalized version of an inequality, first derived by C. Bandle in the analytic setting, for weak subsolutions of a singular Liouville-type equation. As an application we obtain a new proof of the Alexandrov isoperimetric inequality on singular abstract surfaces. Interestingly enough, motivated by this geometric problem, we obtain a seemingly new characterization of local metrics on Alexandrov’s surfaces of bounded curvature. At least to our knowledge, the characterization of the equality case in the isoperimetric inequality in such a weak framework is new as well.

Bartolucci, D., Castorina, D. (2019). On a singular Liouville-type equation and the Alexandrov isoperimetric inequality. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 19(1), 35-64.

On a singular Liouville-type equation and the Alexandrov isoperimetric inequality

D. Bartolucci
Membro del Collaboration Group
;
D. Castorina
2019-01-01

Abstract

We obtain a generalized version of an inequality, first derived by C. Bandle in the analytic setting, for weak subsolutions of a singular Liouville-type equation. As an application we obtain a new proof of the Alexandrov isoperimetric inequality on singular abstract surfaces. Interestingly enough, motivated by this geometric problem, we obtain a seemingly new characterization of local metrics on Alexandrov’s surfaces of bounded curvature. At least to our knowledge, the characterization of the equality case in the isoperimetric inequality in such a weak framework is new as well.
2019
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Singular Liouville-type equations, Alexandrov’s Isoperimetric inequality, Surfaces of Bounded Curvature.
Bartolucci, D., Castorina, D. (2019). On a singular Liouville-type equation and the Alexandrov isoperimetric inequality. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 19(1), 35-64.
Bartolucci, D; Castorina, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BC-SBC-SNS.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 425.27 kB
Formato Adobe PDF
425.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/208277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact