For each p > 0 we provide the construction of a harmonic function on a homogeneous isotropic tree T in the Bergman space A(p) (sigma) with no finite radial limits anywhere. Here, sigma is an analogue of the Lebesgue measure on the tree. With the appropriate modifications, the construction yields a function in A(1) (sigma) when T is a rooted radial tree such that the number of forward neighbors increases so slowly that their reciprocals are not summable.

Cohen, J., Colonna, F., Picardello, A., Singman, D. (2018). Fractal functions with no radial limits in Bergman spaces on trees. HOKKAIDO MATHEMATICAL JOURNAL, 47(2), 269-289.

Fractal functions with no radial limits in Bergman spaces on trees

Picardello, AM;
2018-01-01

Abstract

For each p > 0 we provide the construction of a harmonic function on a homogeneous isotropic tree T in the Bergman space A(p) (sigma) with no finite radial limits anywhere. Here, sigma is an analogue of the Lebesgue measure on the tree. With the appropriate modifications, the construction yields a function in A(1) (sigma) when T is a rooted radial tree such that the number of forward neighbors increases so slowly that their reciprocals are not summable.
2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Bergman space; homogeneous tree; harmonic function; radial tree
Cohen, J., Colonna, F., Picardello, A., Singman, D. (2018). Fractal functions with no radial limits in Bergman spaces on trees. HOKKAIDO MATHEMATICAL JOURNAL, 47(2), 269-289.
Cohen, J; Colonna, F; Picardello, A; Singman, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/207684
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact