Consider the Fano scheme F_k(Y) parameterizing k-dimensional linear subspaces contained in a complete intersection Y in IP^m of multi-degree d = (d_1,....,d_s). It is known that, if t:= t(m,d,k) <= 0 and d_1....d_s >2, for Y a general complete intersection as above, then F_k(Y) has dimension −t. In this paper we consider the case t>0. Then the locus W(d,k) of all complete intersections as above containing a k-dimensional linear subspace is irreducible and turns out to have codimension t in the parameter space of all complete intersections with the given multi-degree. Moreover, we prove that for general [Y] in W(d,k) the scheme F_k(Y) is zero-dimensional of length one. This implies that W(d,k) is rational.

Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P. (2020). On complete intesections containing a linear subspace. GEOMETRIAE DEDICATA, 204(1), 231-239 [10.1007/s10711-019-00452-2].

On complete intesections containing a linear subspace

Ciliberto, C;Flamini, F
;
2020-02-01

Abstract

Consider the Fano scheme F_k(Y) parameterizing k-dimensional linear subspaces contained in a complete intersection Y in IP^m of multi-degree d = (d_1,....,d_s). It is known that, if t:= t(m,d,k) <= 0 and d_1....d_s >2, for Y a general complete intersection as above, then F_k(Y) has dimension −t. In this paper we consider the case t>0. Then the locus W(d,k) of all complete intersections as above containing a k-dimensional linear subspace is irreducible and turns out to have codimension t in the parameter space of all complete intersections with the given multi-degree. Moreover, we prove that for general [Y] in W(d,k) the scheme F_k(Y) is zero-dimensional of length one. This implies that W(d,k) is rational.
feb-2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
complete intersections; linear subspaces; enumerative and birational results
This collaboration has benefitted of funding from project "Families of curves: their moduli and their related varieties", CUP: E81|18000100005 (PI Flaminio Flamini) in the framework of the project Mission Sustainability - University of Rome Tor Vergata and from the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata (CUP: E83-C18000100006)
https://link.springer.com/article/10.1007/s10711-019-00452-2
Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P. (2020). On complete intesections containing a linear subspace. GEOMETRIAE DEDICATA, 204(1), 231-239 [10.1007/s10711-019-00452-2].
Bastianelli, F; Ciliberto, C; Flamini, F; Supino, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
10.1007_s10711-019-00452-2.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 323.5 kB
Formato Adobe PDF
323.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/206949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 1
social impact