The likelihood function for normal multivariate mixtures may present both local spurious maxima and also singularities and the latter may cause the failure of the optimization algorithms. Theoretical results assure that imposing some constraints on the eigenvalues of the covariance matrices of the multivariate normal components leads to a constrained parameter space with no singularities and at least a smaller number of local maxima of the likelihood function. Conditions assuring that an EM algorithm implementing such constraints maintains the monotonicity property of the usual EM algorithm are provided. Different approaches are presented and their performances are evaluated and compared using numerical experiments.

Ingrassia, S., Rocci, R. (2007). Constrained monotone EM algorithms for finite mixture of multivariate Gaussians. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 51(11), 5339-5351 [10.1016/j.csda.2006.10.011].

Constrained monotone EM algorithms for finite mixture of multivariate Gaussians

ROCCI, ROBERTO
2007-01-01

Abstract

The likelihood function for normal multivariate mixtures may present both local spurious maxima and also singularities and the latter may cause the failure of the optimization algorithms. Theoretical results assure that imposing some constraints on the eigenvalues of the covariance matrices of the multivariate normal components leads to a constrained parameter space with no singularities and at least a smaller number of local maxima of the likelihood function. Conditions assuring that an EM algorithm implementing such constraints maintains the monotonicity property of the usual EM algorithm are provided. Different approaches are presented and their performances are evaluated and compared using numerical experiments.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore SECS-S/01 - STATISTICA
English
Con Impact Factor ISI
Mixture models; EM algorithm; Monotonicity; Eigenvalues
Ingrassia, S., Rocci, R. (2007). Constrained monotone EM algorithms for finite mixture of multivariate Gaussians. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 51(11), 5339-5351 [10.1016/j.csda.2006.10.011].
Ingrassia, S; Rocci, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
2007 IngrassiaRocci.pdf

solo utenti autorizzati

Descrizione: Articolo su CSDA 2007 IR
Dimensione 205.83 kB
Formato Adobe PDF
205.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/20640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 64
social impact