We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C∗-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.

Crismale, V., Fidaleo, F., Lu Yun, G. (2017). From discrete to continuous monotone $C^*$-algebras via quantum central limit theorems. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 20(2) [10.1142/S0219025717500138].

From discrete to continuous monotone $C^*$-algebras via quantum central limit theorems

Fidaleo Francesco;
2017-01-01

Abstract

We prove that all finite joint distributions of creation and annihilation operators in monotone and anti-monotone Fock spaces can be realised as Quantum Central Limit of certain operators in a C∗-algebra, at least when the test functions are Riemann integrable. Namely, the approximation is given by weighted sequences of creators and annihilators in discrete monotone C∗-algebras, the weights being related to the above cited test functions.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Central limit theorems; noncommutative probability; C∗-algebras; monotone and anti-monotone commutation relations
Crismale, V., Fidaleo, F., Lu Yun, G. (2017). From discrete to continuous monotone $C^*$-algebras via quantum central limit theorems. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 20(2) [10.1142/S0219025717500138].
Crismale, V; Fidaleo, F; Lu Yun, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/205899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact