In a recent article, Apagodu and Zeilberger discuss some applications of an algorithm for finding and proving congruence identities (modulo primes) of indefinite sums of many combinatorial sequences. At the end, they propose some supercongruences as conjectures. Here we prove one of them, including a new companion enumerating Abelian squares, and we leave some remarks for the others.

Amdeberhan, T., Tauraso, R. (2017). Two triple binomial sum supercongruences. JOURNAL OF NUMBER THEORY, 175, 140-157 [10.1016/j.jnt.2016.11.014].

Two triple binomial sum supercongruences

Tauraso, Roberto
2017-01-01

Abstract

In a recent article, Apagodu and Zeilberger discuss some applications of an algorithm for finding and proving congruence identities (modulo primes) of indefinite sums of many combinatorial sequences. At the end, they propose some supercongruences as conjectures. Here we prove one of them, including a new companion enumerating Abelian squares, and we leave some remarks for the others.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Abelian squares; Supercongruences; Algebra and Number Theory
http://www.elsevier.com/inca/publications/store/6/2/2/8/9/4/index.htt
Amdeberhan, T., Tauraso, R. (2017). Two triple binomial sum supercongruences. JOURNAL OF NUMBER THEORY, 175, 140-157 [10.1016/j.jnt.2016.11.014].
Amdeberhan, T; Tauraso, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/205803
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact