We present an updated analysis of the M31 pixel lensing candidate event OAB-N2 previously reported by Calchi Novati et al. Here we take advantage of new data both astrometrical and photometrical. For astrometry: using archival 4 m KPNO and Hubble Space Telescope/WFPC2 data we perform a detailed analysis of the event source whose result, although not fully conclusive on the source magnitude determination, is confirmed by the following light curve photometry analysis. For photometry: first, unpublished WeCAPP data allow us to confirm OAB-N2, previously reported only as a viable candidate, as a well-constrained pixel lensing event. Second, this photometry enables a detailed analysis in the event parameter space including the effects due to a finite source size. The combined results of these analyses allow us to put a strong lower limit on the lens proper motion. This outcome favors the MACHO lensing hypothesis over self-lensing for this individual event and points the way toward distinguishing between the MACHO and self-lensing hypotheses from larger data sets.
Calchi Novati, S., Dall'Ora, M., Gould, A., Bozza, V., Bruni, I., De Paolis, F., et al. (2010). M31 pixel lensing event OAB-N2: A study of the lens proper motion. THE ASTROPHYSICAL JOURNAL, 717(2), 987-994 [10.1088/0004-637X/717/2/987].
M31 pixel lensing event OAB-N2: A study of the lens proper motion
Mancini L.;
2010-01-01
Abstract
We present an updated analysis of the M31 pixel lensing candidate event OAB-N2 previously reported by Calchi Novati et al. Here we take advantage of new data both astrometrical and photometrical. For astrometry: using archival 4 m KPNO and Hubble Space Telescope/WFPC2 data we perform a detailed analysis of the event source whose result, although not fully conclusive on the source magnitude determination, is confirmed by the following light curve photometry analysis. For photometry: first, unpublished WeCAPP data allow us to confirm OAB-N2, previously reported only as a viable candidate, as a well-constrained pixel lensing event. Second, this photometry enables a detailed analysis in the event parameter space including the effects due to a finite source size. The combined results of these analyses allow us to put a strong lower limit on the lens proper motion. This outcome favors the MACHO lensing hypothesis over self-lensing for this individual event and points the way toward distinguishing between the MACHO and self-lensing hypotheses from larger data sets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.