We present updates to PRISM, a photometric transit-starspot model, and GEMC, a hybrid optimization code combining MCMC and a genetic algorithm. We then present high-precision photometry of four transits in the WASP-6 planetary system, two of which contain a starspot anomaly. All four transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 0.836 ± 0.063 M<SUB>☉</SUB> and 0.864 ± 0.024 R<SUB>☉</SUB>, respectively. For the planet, we find a mass of 0.485 ± 0.027 M<SUB>Jup</SUB>, a radius of 1.230 ± 0.035 R<SUB>Jup</SUB> and a density of 0.244 ± 0.014 ρ<SUB>Jup</SUB>. These values are consistent with those found in the literature. In the likely hypothesis that the two spot anomalies are caused by the same starspot or starspot complex, we measure the stars rotation period and velocity to be 23.80 ± 0.15 d and 1.78 ± 0.20 km s<SUP>-1</SUP>, respectively, at a colatitude of 75.8°. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is λ = 7.2° ± 3.7°, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect. These results suggest that WASP-6 b formed at a much greater distance from its host star and suffered orbital decay through tidal interactions with the protoplanetary disc.

Tregloan-Reed, J., Southworth, J., Burgdorf, M., Calchi Novati, S., Dominik, M., Finet, F., et al. (2015). Transits and starspots in the WASP-6 planetary system. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 450(2), 1760-1769 [10.1093/mnras/stv730].

Transits and starspots in the WASP-6 planetary system

Mancini L.;Ricci D.;
2015-01-01

Abstract

We present updates to PRISM, a photometric transit-starspot model, and GEMC, a hybrid optimization code combining MCMC and a genetic algorithm. We then present high-precision photometry of four transits in the WASP-6 planetary system, two of which contain a starspot anomaly. All four transits were modelled using PRISM and GEMC, and the physical properties of the system calculated. We find the mass and radius of the host star to be 0.836 ± 0.063 M and 0.864 ± 0.024 R, respectively. For the planet, we find a mass of 0.485 ± 0.027 MJup, a radius of 1.230 ± 0.035 RJup and a density of 0.244 ± 0.014 ρJup. These values are consistent with those found in the literature. In the likely hypothesis that the two spot anomalies are caused by the same starspot or starspot complex, we measure the stars rotation period and velocity to be 23.80 ± 0.15 d and 1.78 ± 0.20 km s-1, respectively, at a colatitude of 75.8°. We find that the sky-projected angle between the stellar spin axis and the planetary orbital axis is λ = 7.2° ± 3.7°, indicating axial alignment. Our results are consistent with and more precise than published spectroscopic measurements of the Rossiter-McLaughlin effect. These results suggest that WASP-6 b formed at a much greater distance from its host star and suffered orbital decay through tidal interactions with the protoplanetary disc.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Tregloan-Reed, J., Southworth, J., Burgdorf, M., Calchi Novati, S., Dominik, M., Finet, F., et al. (2015). Transits and starspots in the WASP-6 planetary system. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 450(2), 1760-1769 [10.1093/mnras/stv730].
Tregloan-Reed, J; Southworth, J; Burgdorf, M; Calchi Novati, S; Dominik, M; Finet, F; Jorgensen, Ug; Maier, G; Mancini, L; Prof, S; Ricci, D; Snodgras...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/204855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact