<BR /> Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge. <BR /> Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10<SUP>-3</SUP>. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. <BR /> Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 M<SUB>J</SUB> orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M<SUB>☉</SUB>. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU.

Kains, N., Street, R.a., Choi, J.-., Han, C., Udalski, A., Almeida, L.a., et al. (2013). A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. ASTRONOMY & ASTROPHYSICS, 552, A70 [10.1051/0004-6361/201220626].

A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

Mancini L.;Ricci D.;
2013-01-01

Abstract


Aims: We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic bulge.
Methods: Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q = 1.9 × 10-3. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously.
Results: We find that the lens is made up of a planet of mass 0.53 ± 0.21 MJ orbiting an M dwarf host star with a mass of 0.26 ± 0.11 M. The planetary system is located at a distance of 2.57 ± 0.61 kpc towards the Galactic centre. The projected separation of the planet from its host star is d = 1.408 ± 0.019, in units of the Einstein radius, which corresponds to 2.72 ± 0.75 AU in physical units. We also identified a competitive model with similar planet and host star masses, but with a smaller orbital radius of 1.50 ± 0.50 AU. The planet is therefore located beyond the snow line of its host star, which we estimate to be around ~1-1.5 AU.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Kains, N., Street, R.a., Choi, J.-., Han, C., Udalski, A., Almeida, L.a., et al. (2013). A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251. ASTRONOMY & ASTROPHYSICS, 552, A70 [10.1051/0004-6361/201220626].
Kains, N; Street, Ra; Choi, J-; Han, C; Udalski, A; Almeida, La; Jablonski, F; Tristram, Pj; Jorgensen, Ug; Szymanski, Mk; Kubiak, M; Pietrzynski, G; ...espandi
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/204845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 28
social impact