The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.

Bartolucci, D., Jevnikar, A., Lee, Y., Yang, W. (2018). Non degeneracy, Mean Field Equations and the Onsager theory of 2D turbulence. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 230(1), 397-426 [10.1007/s00205-014-0836-8].

Non degeneracy, Mean Field Equations and the Onsager theory of 2D turbulence

D. Bartolucci
Membro del Collaboration Group
;
2018-04-01

Abstract

The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.
apr-2018
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Mean eld equations, non degeneracy, negative specic heat states.
Bartolucci, D., Jevnikar, A., Lee, Y., Yang, W. (2018). Non degeneracy, Mean Field Equations and the Onsager theory of 2D turbulence. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 230(1), 397-426 [10.1007/s00205-014-0836-8].
Bartolucci, D; Jevnikar, A; Lee, Y; Yang, W
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BJLY_Onsager_final.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 523.73 kB
Formato Adobe PDF
523.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/204603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact