In the past, innovative services, although disruptive both in terms of technological and social effects (e.g., Skype), did not require particular modifications to the network infrastructures. With the advent of the new Internet TV and the increasing importance of Cloud applications such situation is destined to rapidly change, and currently the need to introduce some new service paradigms in the networks is “hot” topic. Both citizen and business needs are constantly changing and require services to be pervasive and adaptive to the actual environment (context awareness). Therefore, services must be accessed through fixed and mobile networks and both in indoor and in outdoor environments, on different terminals (e.g., connected TV, smartphone, tablet), as well as on multiple terminals simultaneously (multi-screen). In addition, individuals have growing needs to create new contents, to move them to the Cloud, and to interact with them. Therefore, they are progressively changing their role from passive “eye-balls” to creative actors. So the new paradigms of modern services such as Internet TV and Cloud computing pose important requirements on service performance and, more specifically, on the characteristics of the network connectivity. Cloud paradigms require (almost) symmetrical bandwidth and very high reliability: such requirements are driving the Telcos to create services with new characteristics also to improve their offerings. For example at transport networks level, cloud and content providers could benefit from the possibility to dynamically change their available bandwidth, to support different sessions such as “interactive” (with low data rate) and “non interactive” (with very high data rate). This need induces the new paradigm of Bandwidth on Demand (BoD) to be introduced in the transport network. Clearly, SDN (Software Defined Network) and Virtualization solutions are the best candidates to support such challenging changes in the transport network. New video and Cloud services also require that the network is capable of dynamically providing E2E (End to End) Quality of Service (QoS), at least in terms of low latency, jitter, and packet loss, according to the customer’s real-time demand. They also require the network to be able to interwork with third-party service platforms, allowing the Telco to act as a service enabler, so placing itself actively at the center of the relationship between the final customer and the OTT (Over-the-Top). Moreover the sustainability of the Internet ecosystem in the presence of increasing traffic volumes, changing traffic patterns and new service requirements, implies a new technical-economic approach aiming at: – extracting value out of the IP core, ensuring quality in the delivery of valuable traffic categories, in order to meet the user’s Quality of Experience (QoE) expectation; – enabling new business models that can properly leverage on both OTTs assets (i.e., applications and contents) and Telcos assets (i.e., network infrastructures, end-users relationship and control). QoE has been introduced as a subjective indicator of the customer’s experiences that resume the overall satisfaction on a specific service. According to this scenario, in this Thesis I investigate two different solutions proposed to optimize the business proposition for an international carrier, and for an access network provider, respectively. The first proposal analyzes the set up of a new BoD service designed to enable international carrier’s customers (or their applications) to dynamically increase their bandwidth in real time. The analysis was performed starting from the modeling of a meaningful portion of the Telecom Italia Sparkle (TIS) worldwide network. The network model has been created as part of the Thesis work out of the actual TIS European network, taking into account today’s operative POPs locations and IP platforms, and then modeling the optical network infrastructure. Initially, the full cost Capex (capital expenditure) was calculated to assess the economic relationship existing between the different network components. Then, some measurement campaigns were performed within the TIS selected network portion to estimate the data traffic patterns. With the measurements that were collected it was possible to establish a model for traffic patterns also evidencing that currently about 25% of traffic in Europe is still generated from the USA. The examination of actual traffic data also allowed the model to introduce a classification of the customers based on their different traffic profiles: “Content” which present unbalanced traffic with out/in ratio = 3:1, “ISP” with out/in traffic ratio 1:3 and “Mixed Bussines” with balanced traffic. Starting from previous results collected in the work, a technical and economic model for the BoD service was created: such service plans to dynamically increase the available bandwidth for a limited period over the time and over a pre-existing connection. The Principal/Agent model was adopted as a model, where Carrier efforts are the observables in a context of uncertain network conditions. Results show that the increase of bandwidth could result in an economic loss for the Carrier operator if no precautions are taken in setting the service price, also considering the network status: moving to a larger bandwidth is more costly when the network has a higher load. With regard to the second scenario considered, i.e. the access network solution, new services (both fixed and mobile) impose stronger requirements including the need for high QoE levels both in terms of content fruition and content composition, i.e., enabling new communication paradigms that integrate multimedia messaging, voice and video communications within a single service logic. In addition, they must allow new usage modalities (in particular, service fruition while on the move, on multi-device platforms, as well as in a multi-screen mode), and high performance (e.g., throughput up to 20Mpbs for 4K video streaming, very low download time of web pages, integrity and fluidity of the video content, high reliability of Cloud computing services, etc.). To ensure high-level subjective QoE for demanding services such as video streaming some important issues need to be taken into account. The relationship between QoS and QoE provides the general framework for the analysis. Here the main technical parameters to be considered are RTT (Round Trip Time) and packet loss, that determine the actually delivered service throughput.1 1 This is the fundamental indicator for the performance of the transport protocol (TCP) which is prevailing in the network (about 90%) for most of the applications. 9 In the past, Internet research has been mostly devoted to evaluating the impact of QoS levels on multimedia services. QoS functionalities (such as packet priorities, network resource reservations, etc...) are necessary to ensure the proper network functioning and service management. However, QoS is not enough to ensure QoE, as some additional network KPIs (Key Performance Indicators) limit the application throughput. To guarantee the required QoE level, specialized platforms (QoE Platforms), acting above the Network Level (Layer 3) must be deployed within the network itself. Some key factors to evaluate the customer’s experience for Internet video are: quality of the images; low waiting times to start; fluidity of use (without interruptions due to buffering). Such key factors depend on application throughput and directly influence the number of accesses to video content and the time spent by users to view videos. Better QoE allows a Telco to market new commercial offers with premium prices based on the throughput of E2E applications instead of the traditional pricing based on maximum (not guaranteed) access bit-rate. For this reason it is necessary that the highest possible bit-rate in the access network actually translates into better QoE for the End User (otherwise a larger bit rate is just wasted). In fact, to improve an End User perceived performance increasing the bit-rate available in the access network could not be sufficient, as latency and packet loss may severely limit throughput, even with UBB (Ultra Broad Band) access. Strategies used to improve the QoE are based on the “replication of contents” in servers (i.e. caching) deployed also in the Telco’s network in order to reduce latency and packet loss. Platforms able to improve the QoE are based on caching, such as CDNs (Content Delivery Networks), ADNs (Application Delivery Networks), Transparent Caching and Website accelerators. The same platforms could also reduce network costs due to the lower traffic volumes in the IP transport network. Therefore, caching contents close to the end user can turn into a “win-win” solution for both the Telcos and the OTTs. For the purpose of this study, a Telco’s network has been modeled at a “logical level” and has been organized into three hierarchical levels: Core Nodes, Metro Nodes and Access Nodes. Some Core Nodes are connected to the Big Internet. Core nodes collect/send Internet traffic from/to the underlying metro/aggregation networks which are seen as “edges”. Access nodes collect all the last mile links generally deployed in a tree topology. They are in charge to gather/forward traffic directly from/to End Users. More specifically, the adopted model counted 20 core node. The underlying edge network was designed into two levels: Metro network and Aggregation network. The total number of Metro nodes was 400; Metro nodes were connected to the Core nodes by rings (average number of Metro nodes per ring was 20). Caches could have been deployed both in a Core node and/or in a Metro node. For the scope of the analysis, in each network level the key network parameters were: – Overall “Network Costs per Traffic Unit” (NCU) referred to the network segments “upstream” the cache deployment point; – “Round Trip Time” (RTT) experienced by data packets travelling to/from an End User and the “traffic source” (Note: the “traffic source” can be a remote “Origin Server” in the Big Internet, or a Cache in a Core/Metro network node). In order to compare different options for caches deployment, some key indicators for Cost Saving and Throughput Improvement were considered having taken costs and throughput of the network without caches as a reference. Results for both cost saving and application throughput improvement looks very satisfactory, as the analysis shows. Therefore, one conclusion of the study is that caches suitably deployed inside a Telco network can improve End Users experience while reducing network total cost of ownership.
In passato, servizi innovativi anche se dirompenti sia in termini sociali che tecnologici non hanno richiesto particolari modifiche alle infrastrutture di rete. Con l'avvento della Internet TV e l'aumento delle applicazioni cloud tale situazione sta rapidamente cambiando e la necessità di introdurre nuovi paradigmi di servizio nelle reti è un tema attualmente molto dibattuto. Le necessità dei cittadini e del business in genere, sono in continua evoluzione e richiedono ai servizi di essere pervasivi e adattativi all'ambiente reale (context awareness). In particolare cresce sempre più negli utenti la necessità di creare ed accedere a nuovi contenuti anche attraverso il cloud e di interagire con loro: in sostanza cambia il loro ruolo da passivi “eye-balls” a quella di “attori creativi”. Ne consegue che i nuovi paradigmi dei servizi moderni quali internet TV e cloud computing pongono stringenti requisiti sulle performance e più in dettaglio sulla connettività. I paradigmi del cloud implicano tra le altre, larghezza di banda simmetrica e altissima affidabilità: questi requisiti stanno portando le Telco a creare nuovi servizi con nuove caratteristiche che di fatto vanno ad aumentare la loro offerta. Ad esempio al livello di rete di trasporto i fornitori di servizi cloud e di contenuti potrebbero beneficiare della possibilità di cambiare dinamicamente la loro larghezza di banda disponibile, per supportare diversi tipi di sessioni come le “interactive” (a bassa velocità di trasmissione) e le “non interactive” (ad alta velocità di trasmissione). Questa esigenza introduce il nuovo paradigma di Bandwidth on Demand (BoD) nella rete di trasporto. Chiaramente le soluzioni SDN-NFV (Software Defined Network - Network Functions Virtualization) sono le migliori candidate per supportare operativamente cambiamenti così radicali negli schemi tradizionali di provisioning del servizio. I nuovi servizi video e cloud richiedono anche che la rete sia in grado di fornire in modo dinamico, in tempo reale ed in base alle necessità del cliente Quality of Service (QoS) – End to End (E2E) in termini di bassa latenza, jitter e packet loss. Esse richiedono inoltre che la rete possa interagire con piattaforme di servizio di terze parti, permettendo ai Telco di operare come un “abilitatore di servizi”, ponendosi così attivamente al centro del rapporto tra il cliente finale e gli Over-the-Top (OTT). In particolare la sostenibilità dell'ecosistema internet in presenza di volumi di traffico crescenti, il cambiamento dei modelli di traffico e le nuove esigenze di servizio, implicano un nuovo approccio volto a: - generare valore dal core IP, garantendo qualità nella fornitura di classi di traffico pregiate, al fine di soddisfare le aspettative degli utenti in termini di QoE; - abilitare nuovi modelli di business in grado di sfruttare adeguatamente sia gli asset degli OTT (ad es. applicazioni e contenuti), che dei Telco (cioè infrastrutture di rete, controllo e relazioni con gli utenti). Alla luce di questi scenari, nel presente lavoro sono studiate due diverse soluzioni: una per carrier internazionali e l’altra per operatori di reti di accesso. La prima soluzione affronta la progettazione di un servizio di BoD in grado di consentire ai clienti dei carrier (ovvero alle loro applicazioni) di aumentare dinamicamente ed in real time la loro banda disponibile. La progettazione è stata condotta a partire dalla modellizzazione di una porzione della rete mondiale di Telecom Italia Sparkle. Il modello è stato creato estraendo dalla rete reale europea quattordici tra i maggiori nodi POP. Il modello tiene conto della distribuzione geografica dei POP e della piattaforma hardware IP e crea un modello dell’infrastruttura ottica di trasporto. Per valutare la relazione economica tra le diverse componenti di rete sono stati calcolati i capex “full cost” dell’intera infrastruttura. In seguito sono state effettuate alcune campagne di misura per stimare l’andamento dei flussi di traffico. Dalle misure, tra le altre cose è emerso che, nonostante la presenza dei maggiori OTT nei POP europei, circa il 25% del traffico in Europa proviene ancora dagli USA. Il modello ha anche introdotto una classificazione dei clienti in base ai loro profili di traffico: ci sono i “Content”, che presentano traffico sbilanciato con rapporto out/in = 3:1, gli “ISP” con rapporto di traffico out/in di 1:3 ed i “Bussines Misto” con traffico equilibrato. Partendo dai risultati suddetti, è stato creato un modello tecnico ed economico per il servizio di BoD: tale servizio consente di aumentare dinamicamente la larghezza di banda disponibile per un periodo limitato nel tempo, su una connessione preesistente. A tal fine è stato adottato il modello Principal/Agent nel quale gli “effort” forniti dai carrier sono gli osservabili in condizioni di rete incerte. I risultati mostrano che l'aumento della larghezza di banda può comportare una perdita economica per l’operatore carrier se non si adottano adeguate precauzioni nel fissare il prezzo del servizio, condizioni che devono necessariamente tenere in considerazione lo stato della rete: l’incremento di larghezza di banda infatti è più costoso quando lo stato della rete muove verso un carico superiore. Per quanto concerne la rete di accesso, i nuovi servizi (sia fissi che mobili) impongono requisiti più stringenti, tra i quali la necessità di elevati livelli di QoE sia in termini di fruizione che di creazione di contenuti, cioè, abilitando nuovi paradigmi di comunicazione che integrano multimedia messaging, voce e video in una logica di servizio unico. Inoltre essi devono consentire nuove modalità di utilizzo (in particolare, la fruizione in mobilità, su piattaforme multi-device, così come in una modalità multi-schermo) e ad alte prestazioni (ad esempio con throughput fino a 20Mb/s per il video streaming 4K, bassi tempi di download delle pagine web, integrità e fluidità dei contenuti video, elevata affidabilità dei servizi cloud, ecc.) Per garantire un’elevata QoE ai servizi esigenti come lo streaming video, devono essere valutati alcuni aspetti importanti. Il rapporto tra QoS e QoE è il framework generale ove si devono inserire i principali parametri tecnici che possono influenzare decisamente il throughput sul servizio erogato quali il Round Trip Time (RTT) e il Packet Loss (PL). La ricerca nel passato è stata in gran parte dedicata alla valutazione dell'impatto dei livelli di QoS sui servizi multimediali, tuttavia migliorare la QoS può risultare non sufficiente per migliorare la QoE. Per garantire il livello richiesto di QoE, devono essere inserite in rete piattaforme specializzate (QoE Platforms) che agiscono al di sopra del livello di network (Layer 3). La QoE è stata introdotta come una misura soggettiva dell’esperienza dell’utente (cliente) che esprime la soddisfazione generale su uno specifico servizio e che quindi in base a quest’ultima è incentivato oppure no ad acquistare in futuro nuovi servizi. Alcuni fattori chiave per valutare l’esperienza per il video internet sono: la qualità delle immagini; i bassi tempi di attesa per iniziare la riproduzione; la fluidità di fruizione (senza interruzioni dovute a buffer). Tali fattori chiave dipendono dal throughput al livello applicativo ed influenzano direttamente il numero di accessi a contenuti video e il tempo speso dagli utenti per visualizzarli. Una migliore QoE consente alle Telco di commercializzare offerte “premium” basate sul throughput delle applicazioni E2E piuttosto che sul tradizionale massimo bit-rate (non garantito). Per questa ragione è necessario che il requisito di elevato bit rate nella rete di accesso trasli nella migliore QoE per l’utente finale. Tuttavia per migliorare le performance percepite, può non essere sufficiente aumentare il bit rate: latenza e packet loss possono infatti limitare enormemente il throughput anche negli accessi UltraBroadband. Le piattaforme per migliorare la QoE sono basate sul caching e sono ad esempio le Content Delivery Network (CDN), le Application Delivery Network (ADN), Transparent Cache e website accelerators. Le stesse piattaforme possono oltretutto ridurre i costi grazie alla riduzione dei volumi di traffico nella rete di trasporto IP, oltretutto mettere le cache vicine agli utenti finali può risultare in una soluzione win-win per Telco e OTT. Ai fini di questo studio, la rete della Telco è stata modellizzata a livello logico ed è stata organizzata in tre livelli gerarchici: nodi Core, nodi Metro e nodi di Accesso. Alcuni dei Core Node sono connessi alla Big Internet. I nodi Core raccolgono/inviano il traffico dagli strati Metro e Accesso sottostanti che sono visti come “edges”. I nodi di accesso raccolgono tutti i link di ultimo miglio che sono generalmente sviluppati in reti ad albero. Loro hanno il compito di inoltrare/raccogliere il traffico direttamente agli end-user. Più specificamente il modello adottato conta 20 nodi Core e 400 nodi Metro connessi ad anello ai nodi Core (con numero medio di 20 nodi Metro per anello) Nella simulazione le caches sono state disposte sia nei nodi Core che nei Metro. Per lo scopo dell’analisi sono stati considerati il “Network Costs per Traffic Unit” (NCU) riferito ai segmenti di rete upstream rispetto alle cache ed il RTT dei pacchetti trasmessi tra utente e “sorgente del traffico” che può essere un server remoto in internet o la cache. Al fine di confrontare le diverse opzioni per la distribuzione in rete delle cache, sono stati considerati alcuni indicatori chiave quali il Cost Saving ed il miglioramento del Throughput ottenuti prendendo come riferimento la rete senza cache. I risultati sembrano molto soddisfacenti sia in termini di risparmio dei costi che di miglioramento del throughput delle applicazioni. Quindi cache opportunamente distribuite all'interno della rete di un Telco possono migliorare sensibilmente l’esperienza degli utenti finali, riducendo i Total Cost of Ownership di rete.
Vari, M. (2014). Evoluzione delle architetture di rete e dei servizi per un carrier in un ambiente full IP [10.58015/vari-marco_phd2014].
Evoluzione delle architetture di rete e dei servizi per un carrier in un ambiente full IP
VARI, MARCO
2014-01-01
Abstract
In the past, innovative services, although disruptive both in terms of technological and social effects (e.g., Skype), did not require particular modifications to the network infrastructures. With the advent of the new Internet TV and the increasing importance of Cloud applications such situation is destined to rapidly change, and currently the need to introduce some new service paradigms in the networks is “hot” topic. Both citizen and business needs are constantly changing and require services to be pervasive and adaptive to the actual environment (context awareness). Therefore, services must be accessed through fixed and mobile networks and both in indoor and in outdoor environments, on different terminals (e.g., connected TV, smartphone, tablet), as well as on multiple terminals simultaneously (multi-screen). In addition, individuals have growing needs to create new contents, to move them to the Cloud, and to interact with them. Therefore, they are progressively changing their role from passive “eye-balls” to creative actors. So the new paradigms of modern services such as Internet TV and Cloud computing pose important requirements on service performance and, more specifically, on the characteristics of the network connectivity. Cloud paradigms require (almost) symmetrical bandwidth and very high reliability: such requirements are driving the Telcos to create services with new characteristics also to improve their offerings. For example at transport networks level, cloud and content providers could benefit from the possibility to dynamically change their available bandwidth, to support different sessions such as “interactive” (with low data rate) and “non interactive” (with very high data rate). This need induces the new paradigm of Bandwidth on Demand (BoD) to be introduced in the transport network. Clearly, SDN (Software Defined Network) and Virtualization solutions are the best candidates to support such challenging changes in the transport network. New video and Cloud services also require that the network is capable of dynamically providing E2E (End to End) Quality of Service (QoS), at least in terms of low latency, jitter, and packet loss, according to the customer’s real-time demand. They also require the network to be able to interwork with third-party service platforms, allowing the Telco to act as a service enabler, so placing itself actively at the center of the relationship between the final customer and the OTT (Over-the-Top). Moreover the sustainability of the Internet ecosystem in the presence of increasing traffic volumes, changing traffic patterns and new service requirements, implies a new technical-economic approach aiming at: – extracting value out of the IP core, ensuring quality in the delivery of valuable traffic categories, in order to meet the user’s Quality of Experience (QoE) expectation; – enabling new business models that can properly leverage on both OTTs assets (i.e., applications and contents) and Telcos assets (i.e., network infrastructures, end-users relationship and control). QoE has been introduced as a subjective indicator of the customer’s experiences that resume the overall satisfaction on a specific service. According to this scenario, in this Thesis I investigate two different solutions proposed to optimize the business proposition for an international carrier, and for an access network provider, respectively. The first proposal analyzes the set up of a new BoD service designed to enable international carrier’s customers (or their applications) to dynamically increase their bandwidth in real time. The analysis was performed starting from the modeling of a meaningful portion of the Telecom Italia Sparkle (TIS) worldwide network. The network model has been created as part of the Thesis work out of the actual TIS European network, taking into account today’s operative POPs locations and IP platforms, and then modeling the optical network infrastructure. Initially, the full cost Capex (capital expenditure) was calculated to assess the economic relationship existing between the different network components. Then, some measurement campaigns were performed within the TIS selected network portion to estimate the data traffic patterns. With the measurements that were collected it was possible to establish a model for traffic patterns also evidencing that currently about 25% of traffic in Europe is still generated from the USA. The examination of actual traffic data also allowed the model to introduce a classification of the customers based on their different traffic profiles: “Content” which present unbalanced traffic with out/in ratio = 3:1, “ISP” with out/in traffic ratio 1:3 and “Mixed Bussines” with balanced traffic. Starting from previous results collected in the work, a technical and economic model for the BoD service was created: such service plans to dynamically increase the available bandwidth for a limited period over the time and over a pre-existing connection. The Principal/Agent model was adopted as a model, where Carrier efforts are the observables in a context of uncertain network conditions. Results show that the increase of bandwidth could result in an economic loss for the Carrier operator if no precautions are taken in setting the service price, also considering the network status: moving to a larger bandwidth is more costly when the network has a higher load. With regard to the second scenario considered, i.e. the access network solution, new services (both fixed and mobile) impose stronger requirements including the need for high QoE levels both in terms of content fruition and content composition, i.e., enabling new communication paradigms that integrate multimedia messaging, voice and video communications within a single service logic. In addition, they must allow new usage modalities (in particular, service fruition while on the move, on multi-device platforms, as well as in a multi-screen mode), and high performance (e.g., throughput up to 20Mpbs for 4K video streaming, very low download time of web pages, integrity and fluidity of the video content, high reliability of Cloud computing services, etc.). To ensure high-level subjective QoE for demanding services such as video streaming some important issues need to be taken into account. The relationship between QoS and QoE provides the general framework for the analysis. Here the main technical parameters to be considered are RTT (Round Trip Time) and packet loss, that determine the actually delivered service throughput.1 1 This is the fundamental indicator for the performance of the transport protocol (TCP) which is prevailing in the network (about 90%) for most of the applications. 9 In the past, Internet research has been mostly devoted to evaluating the impact of QoS levels on multimedia services. QoS functionalities (such as packet priorities, network resource reservations, etc...) are necessary to ensure the proper network functioning and service management. However, QoS is not enough to ensure QoE, as some additional network KPIs (Key Performance Indicators) limit the application throughput. To guarantee the required QoE level, specialized platforms (QoE Platforms), acting above the Network Level (Layer 3) must be deployed within the network itself. Some key factors to evaluate the customer’s experience for Internet video are: quality of the images; low waiting times to start; fluidity of use (without interruptions due to buffering). Such key factors depend on application throughput and directly influence the number of accesses to video content and the time spent by users to view videos. Better QoE allows a Telco to market new commercial offers with premium prices based on the throughput of E2E applications instead of the traditional pricing based on maximum (not guaranteed) access bit-rate. For this reason it is necessary that the highest possible bit-rate in the access network actually translates into better QoE for the End User (otherwise a larger bit rate is just wasted). In fact, to improve an End User perceived performance increasing the bit-rate available in the access network could not be sufficient, as latency and packet loss may severely limit throughput, even with UBB (Ultra Broad Band) access. Strategies used to improve the QoE are based on the “replication of contents” in servers (i.e. caching) deployed also in the Telco’s network in order to reduce latency and packet loss. Platforms able to improve the QoE are based on caching, such as CDNs (Content Delivery Networks), ADNs (Application Delivery Networks), Transparent Caching and Website accelerators. The same platforms could also reduce network costs due to the lower traffic volumes in the IP transport network. Therefore, caching contents close to the end user can turn into a “win-win” solution for both the Telcos and the OTTs. For the purpose of this study, a Telco’s network has been modeled at a “logical level” and has been organized into three hierarchical levels: Core Nodes, Metro Nodes and Access Nodes. Some Core Nodes are connected to the Big Internet. Core nodes collect/send Internet traffic from/to the underlying metro/aggregation networks which are seen as “edges”. Access nodes collect all the last mile links generally deployed in a tree topology. They are in charge to gather/forward traffic directly from/to End Users. More specifically, the adopted model counted 20 core node. The underlying edge network was designed into two levels: Metro network and Aggregation network. The total number of Metro nodes was 400; Metro nodes were connected to the Core nodes by rings (average number of Metro nodes per ring was 20). Caches could have been deployed both in a Core node and/or in a Metro node. For the scope of the analysis, in each network level the key network parameters were: – Overall “Network Costs per Traffic Unit” (NCU) referred to the network segments “upstream” the cache deployment point; – “Round Trip Time” (RTT) experienced by data packets travelling to/from an End User and the “traffic source” (Note: the “traffic source” can be a remote “Origin Server” in the Big Internet, or a Cache in a Core/Metro network node). In order to compare different options for caches deployment, some key indicators for Cost Saving and Throughput Improvement were considered having taken costs and throughput of the network without caches as a reference. Results for both cost saving and application throughput improvement looks very satisfactory, as the analysis shows. Therefore, one conclusion of the study is that caches suitably deployed inside a Telco network can improve End Users experience while reducing network total cost of ownership.File | Dimensione | Formato | |
---|---|---|---|
Vari Marco .pdf
solo utenti autorizzati
Licenza:
Copyright degli autori
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.