The management of the great amount of solid residues and gaseous emissions resulting from thermal and industrial processes is one of the major critical issues to be dealt with by the different sectors involved. The physical, chemical and environmental properties of the solid streams are, in some cases, not suitable for their reuse and a relevant fraction is directly landfilled or limitedly reused for low-end applications. Hence, suitable treatments are needed to exploit and to valorize the potential of these by-products in order to reduce their landfilling and produce valuable products able to replace virgin raw materials. The main objective of this doctoral thesis was to investigate new process routes for the valorization of two types of industrial residues, i.e. Basic Oxygen Furnace (BOF) steel slag and coal gasification ash. The first and most relevant part of this work was addressed to slags generated from steel production, which generates high emissions of CO2, making it one of the main industrial sources of greenhouse gases (GHG). In particular, the BOF steel slags were treated with a granulation and granulation/carbonation process, with the aim of producing secondary aggregates suitable for reuse in civil engineering applications and of storing CO2 in a solid and thermodynamically stable form, thus at least partially contributing to the reduction of GHG emissions from steelmaking plants. The results of the tests, carried out in a rotary drum granulator and by mixing the slag with water, indicated that the particle size of the slag increased progressively with reaction time and significant CO2 uptake values (between 120 and 150 g CO2/kg) were measured even after short reaction times (30 or 60 minutes). The leaching behavior of the obtained granules showed to comply with the limits for reuse set by the Italian legislation. However, the mechanical performance of the granules, evaluated by applying the Aggregate Crushing Value (ACV) test, resulted far from that achieved by natural gravel. The mechanical properties of the artificial aggregates were improved by applying both treatments to slag-cement mixtures, by replacing 10% and 20% by wt. of slag with cement. In this case, the mechanical performance was improved regardless the amount of cement employed, reaching ACV similar to those reported in the British Standard for igneous rock, i.e. 16%. Nevertheless, as the production of cement is related to high environmental impacts, an alternative and more sustainable option was evaluated with the aim to increase the mechanical performance of the granules. Indeed, in order to accelerate the original latent hydraulic properties of the slag, the alkali activation process was exploited by using two different alkali solutions, i.e. a mixture of sodium hydroxide/sodium silicate and sodium hydroxide/sodium carbonate. It was found that the BOF slag mortars activated with the sodium hydroxide/sodium silicate solution and cured under a continuous flux of CO2 at 50 °C, showed the highest mechanical strength. So, this alkaline solution was used as binder in the granulation-carbonation treatment, with the aim of enhancing the mechanical properties of the obtained aggregates. The results of the tests showed that the maximum mean diameter achieved for the activated granules was 13 mm, with maximum CO2 uptake of the activated granules resulted equal to 40 gCO2/kg steel slag. As for the environmental behavior of the treated material, only the release of Cr and V of the activated granules exceeded the Italian limit for reuse. More important, the use of alkalis showed to exert a relevant influence on the strength of the granules, that after both the granulation and granulation-carbonation treatments showed an ACV comparable or even lower than that of natural gravel (20 %). The second part of this work was addressed at the characterization and valorization of the ashes produced by the Zecomix (Zero Emission COal MIXed technology) platform, collected both directly from the solid bed (bed ash) and from the cyclone installed downstream the coal gasifier (fly ash). Both ashes were composed mainly by Mg, Si and Fe, typical of the olivine that made up the bed of the gasifier, whereas the total organic carbon was 5% in the bed ash and 27% in the the fly ash. Both gasification residues underwent a particle size and density separation procedure, allowing to obtain an organic and an inorganic fraction, which could then be separately reused.
La gestione dei rifiuti solidi e gassosi derivanti da processi termici è una delle principali criticità da affrontare per i diversi settori industriali coinvolti. Le proprietà fisiche, chimiche e ambientali di tali residui non li rendono spesso adatti per il riutilizzo, generalmente provocandone lo smaltimento in discarica o eventualmente l’impiego in applicazioni di scarso valore. Ne risulta la necessità di sviluppare trattamenti idonei a valorizzare il potenziale di questi sottoprodotti, al fine di ridurne lo smaltimento in discarica e produrre prodotti finali in grado di sostituire materie prime vergini. L'obiettivo principale di questa tesi di dottorato è stato pertanto quello di indagare nuovi trattamenti per la valorizzazione di residui industriali prodotti da diversi processi termici.La prima e più rilevante parte di questo lavoro ha riguardato lo studio di scorie provenienti da impianti per la produzione dell’acciaio. In particolare, le scorie BOF sono state trattate con un processo di granulazione e di granulazione/carbonatazione, con l'obiettivo di produrre aggregati secondari idonei al riutilizzo in applicazioni di ingegneria civile e di stoccare CO2 in forma solida e termodinamicamente stabile, contribuendo in questo modo, seppur parzialmente, alla riduzione delle emissioni di CO2 dell’acciaieria. I risultati dei test, condotti su scala di laboratorio in un reattore a tamburo rotante dotato di un coperchio e di un sistema per l’alimentazione della CO2 e miscelando le scorie con acqua, hanno mostrato che la dimensione delle particelle aumenta progressivamente con il tempo di reazione e valori significativi di CO2 uptake (tra 120 e 150 g CO2/kg) sono stati misurati anche dopo tempi di reazione brevi (30 minuti). Il comportamento alla lisciviazione dei granuli ottenuti rispetta i limiti previsti per il riutilizzo fissato dalla normativa italiana. Tuttavia, le prestazioni meccaniche dei granuli non sono risultate adatte per permetterne il riutilizzo in applicazioni dell’ ingegneria civile. Quindi, con l'obiettivo di migliorare le proprietà meccaniche degli aggregati, i trattamenti di granulazione e granulazione-carbonatazione sono stati applicati ad una miscela scorie-cemento, sostituendo il 10% e 20% in peso di scorie con cemento. In questo caso, si è osservato che le prestazioni meccaniche migliorano, indipendentemente alla quantità di cemento nella miscela, raggiungendo valori di ACV simili a quelli riportato nel British Standard per rocce ignee, ossia 16%. Inoltre, è risultato che la carbonatazione non influenza le proprietà meccaniche dei granuli ottenuti, per tutte le miscele testate. Ciononostante, al di là del cemento cui sono associati alti impatti ambientali, sono state valutate altre opzioni alternative e più sostenibili in grado di migliorare le performances dei granuli prodotti. Al fine di accelerare le originali latenti proprietà idrauliche delle scorie BOF, è stato sfruttato il processo di attivazione alcalina utilizzando due diverse soluzioni alcaline (una miscela di idrossido di sodio/silicato di sodio e idrossido di sodio/carbonato di sodio). Si è osservato che la resistenza meccanica è risultata maggiore per i campioni di scorie miscelati con la soluzione di idrossido e silicato di sodio. Quindi, sulla base di questi risultati, tale soluzione alcalina è stata utilizzata per studiare l'effetto del processo in combinazione con il trattamento di granulazione-carbonatazione, con l’obiettivo di migliorare le proprietà meccaniche degli aggregati. I risultati dei test hanno mostrato che il diametro medio massimo raggiunto dai granuli era pari a 13 mm e che il valore massimo di stoccaggio della CO2 dei granuli contenti l’attivatore alcalino è risultato pari a 40 gCO2/kg di scoria. Quanto al comportamento ambientale del materiale trattato, sono state osservate differenze tra le prove di lisciviazione effettuate con granuli attivati frantumati e non frantumati, ma in entrambi i casi le concentrazioni di Cr e V sono risultate superiori al limite imposto per il riutilizzo dalla normativa italiana. Inoltre, l’utilizzo dell’attivatore influenza la resistenza dei granuli che dopo entrambi i trattamenti, hanno fornito valori di ACV confrontabili o inferiori di quelli ottenuti per la ghiaia naturale (20%). La seconda parte del lavoro ha riguardato la caratterizzazione e l’applicazione di processi per la valorizzazione di ceneri prodotte dalla piattaforma Zecomix, i cui residui solidi sono stati raccolti dal letto solido del gassificatore e dal ciclone posto a valle dello stesso. Si è osservato che le ceneri sono costituite principalmente da Mg, Si e Fe, tipici elementi dell’olivina utilizzata nel letto fluido. Il contenuto di carbonio organico totale è risultato maggiore nel campione di ceneri dal ciclone (27% in peso) rispetto a quello ottenuto nel campione di ceneri pesanti (5% in peso). Dopo la caratterizzazione, i campioni sono stati sottoposti ad un procedura di separazione per vagliatura e per densità, con l’obiettivo di valutare le più idonee applicazioni per ciascun residuo ottenuto.
Morone, M. (2014). Valorization of BOF steel slag and gasification ashes through suitable treatments aimed at reuse [10.58015/morone-milena_phd2014].
Valorization of BOF steel slag and gasification ashes through suitable treatments aimed at reuse
MORONE, MILENA
2014-01-01
Abstract
The management of the great amount of solid residues and gaseous emissions resulting from thermal and industrial processes is one of the major critical issues to be dealt with by the different sectors involved. The physical, chemical and environmental properties of the solid streams are, in some cases, not suitable for their reuse and a relevant fraction is directly landfilled or limitedly reused for low-end applications. Hence, suitable treatments are needed to exploit and to valorize the potential of these by-products in order to reduce their landfilling and produce valuable products able to replace virgin raw materials. The main objective of this doctoral thesis was to investigate new process routes for the valorization of two types of industrial residues, i.e. Basic Oxygen Furnace (BOF) steel slag and coal gasification ash. The first and most relevant part of this work was addressed to slags generated from steel production, which generates high emissions of CO2, making it one of the main industrial sources of greenhouse gases (GHG). In particular, the BOF steel slags were treated with a granulation and granulation/carbonation process, with the aim of producing secondary aggregates suitable for reuse in civil engineering applications and of storing CO2 in a solid and thermodynamically stable form, thus at least partially contributing to the reduction of GHG emissions from steelmaking plants. The results of the tests, carried out in a rotary drum granulator and by mixing the slag with water, indicated that the particle size of the slag increased progressively with reaction time and significant CO2 uptake values (between 120 and 150 g CO2/kg) were measured even after short reaction times (30 or 60 minutes). The leaching behavior of the obtained granules showed to comply with the limits for reuse set by the Italian legislation. However, the mechanical performance of the granules, evaluated by applying the Aggregate Crushing Value (ACV) test, resulted far from that achieved by natural gravel. The mechanical properties of the artificial aggregates were improved by applying both treatments to slag-cement mixtures, by replacing 10% and 20% by wt. of slag with cement. In this case, the mechanical performance was improved regardless the amount of cement employed, reaching ACV similar to those reported in the British Standard for igneous rock, i.e. 16%. Nevertheless, as the production of cement is related to high environmental impacts, an alternative and more sustainable option was evaluated with the aim to increase the mechanical performance of the granules. Indeed, in order to accelerate the original latent hydraulic properties of the slag, the alkali activation process was exploited by using two different alkali solutions, i.e. a mixture of sodium hydroxide/sodium silicate and sodium hydroxide/sodium carbonate. It was found that the BOF slag mortars activated with the sodium hydroxide/sodium silicate solution and cured under a continuous flux of CO2 at 50 °C, showed the highest mechanical strength. So, this alkaline solution was used as binder in the granulation-carbonation treatment, with the aim of enhancing the mechanical properties of the obtained aggregates. The results of the tests showed that the maximum mean diameter achieved for the activated granules was 13 mm, with maximum CO2 uptake of the activated granules resulted equal to 40 gCO2/kg steel slag. As for the environmental behavior of the treated material, only the release of Cr and V of the activated granules exceeded the Italian limit for reuse. More important, the use of alkalis showed to exert a relevant influence on the strength of the granules, that after both the granulation and granulation-carbonation treatments showed an ACV comparable or even lower than that of natural gravel (20 %). The second part of this work was addressed at the characterization and valorization of the ashes produced by the Zecomix (Zero Emission COal MIXed technology) platform, collected both directly from the solid bed (bed ash) and from the cyclone installed downstream the coal gasifier (fly ash). Both ashes were composed mainly by Mg, Si and Fe, typical of the olivine that made up the bed of the gasifier, whereas the total organic carbon was 5% in the bed ash and 27% in the the fly ash. Both gasification residues underwent a particle size and density separation procedure, allowing to obtain an organic and an inorganic fraction, which could then be separately reused.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Morone.pdf
solo utenti autorizzati
Licenza:
Copyright degli autori
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.