Mechanical signals are important regulators of cellular proliferation and differentiation. Cells are able to sense microenvironment perturbations and to produce a response such as proliferation, differentiation, migration, apoptosis. Skeletal muscle cells are not able to regenerate after a severe loss of tissue. The engineering of muscle in vitro is a major challenge in view of possible replacements of tissue damage after degenerative diseases or accidents. In this context, the comprehension of the relationship that exists between the substrate (microenvironment) and the cellular response is pivotal for the creation of artificial tissues. The aim of this study is to test the role of mechanical stress on differentiation processes and to highlight the role of yes-associated protein (YAP) in this processes. We decided to use as experimental model skeletal muscle cells because muscle is continuously exposed to mechanical stress. We decided to induce two different type of stress: (1) in the first one we embedded myoblast cells (C2C12) in a 3D matrix made of polyethylene glycol and fibrinogen (PEG-F) because in this way we can mimic a physiological environment. We evaluate the role of compression applied by the hydrogel at two different concentration and then we compressed cells embedded into the hydrogel by a devices built specifically to this purpose; (2) in the second approach we seeded mesoangioblast cells (Mabs) on a layer of high density vertical ZnO nanowires (NWs) to evaluate the ability of Mabs cells to differentiate on it. For the first study, we characterized the YAP phosphorylation level in cells growing in two different microenvironment: polystyrene substrate (2D) and PEG-F matrix (3D). We observed that in cells embedded into a 3D matrix YAP phosphorylation occurs earlier compared to 2D. Then we evaluated cellular response to a different PEG-F matrix concentrations and correlate it to myoblast differentiation markers. We found that YAP is more active at a transcriptional level in cells embedded in a soft matrix and that the differentiation markers show an higher level. Then we evaluated the effect of compression on C2C12 cells encapsulated in the PEG-F matrix, demonstrating that compression induce differentiation in a marked way in a very short range of time. In the second approach we seeded Mabs cells on glasses functionalized with high density vertical ZnO NWs. We show that this support is compatible with cells viability but cells assume a round shape. Further experiments suggested that cells are not able to assume a classic conformation because NWs structure impede them to take contact with the substrate. Cells seeded on ZnO NWs preserve the ability to differentiate, in fact, when cells are detached from the ZnO NWs layer and seeded again on a glass not functionalized they are able to take contact with the substrate and then to differentiate, indicating that ZnO NWs can be a system to finely control cellular differentiation.

I segnali meccanici sono importanti regolatori della proliferazione cellulare e del differenziamento. Le cellule sono in grado di percepire le modificazioni del microambiente e di produrre una risposta: proliferazione, differenziamento, migrazione o apoptosi. Le cellule del muscolo scheletrico non sono in grado di rigenerarsi dopo aver subito un grave danno. Pertanto, in seguito a danno tissutale dovuto, ad esempio, a una malattia degenerativa lo sviluppo di tessuti muscolari, in vitro, per sostituire quelli danneggiati è una delle più grandi sfide. In questo contesto è importante comprendere la relazione che intercorre tra il microambiente e la cellula. Lo scopo di questo lavoro è valutare l’effetto dello stress meccanico sul processo di differenziamento cellulare e di comprendere meglio il ruolo che la proteina YAP svolge in esso. Il modello sperimentale utilizzato è costituito da cellule miogeniche in quanto il muscolo è continuamente esposto a stress meccanico. Sono stati applicati due diversi tipi di stress: (1) cellule mioblastiche sono state seminate in una matrice 3D composta da polietilen glicole e fibrinogeno (PEG-F) per mimare una condizione fisiologica. E’ stato valutato il ruolo della compressione applicata dalla stessa matrice a diverse concentrazioni (7 e 14 mg/ml) e, in seguito, è stato valutato il ruolo della compressione applicata da un dispositivo appositamente costruito; (2) mesoangioblasti sono stati seminati su uno strato di nanowires (NWs) di ZnO ed è stato valutato il loro effetto sul differenziamento cellulare. E’ stato valutato il livello di fosforilazione della proteina YAP in cellule cresciute in due differenti microambienti: un substrato di polistirene (2D) e una matrice di PEG-F (3D). È stato osservato che in cellule seminate nella matrice 3D la fosforilazione della proteina YAP si verifica prima rispetto alle cellule seminate sulla matrice 2D. Le cellule sono state seminate nella matrice PEG-F a due differenti concentrazioni (7 e 14 mg/ml) ed è stata valutata la risposta cellulare e la correlazione con il processo di differenziamento. È risultato che nelle cellule seminate nella matrice alla concentrazione di 7mg/ml la proteina YAP è maggiormente attiva a livello trascrizionale e i marcatori del differenziamento sono più espressi. Successivamente è stato valutato l’effetto della compressione sulle cellule C2C12 cresciute nella matrice ed è stato dimostrato che la compressione induce il differenziamento cellulare. Nella seconda parte del lavoro cellule mesangioblastiche sono state seminate su un substrato funzionalizzato con NWs verticali di ZnO. È stato dimostrato che questa tipologia di substrato è compatibile con la vitalità cellulare, ma le cellule assumono una forma rotondeggiante. Ulteriori esperimenti suggeriscono che le cellule non sono in grado di assumere la loro classica forma perché i NWs impediscono loro di aderire al substrato. In queste condizioni le cellule sono in grado di preservare la capacità di differenziare, infatti quando le cellule vengono staccate da questo substrato e riseminate su un supporto privo di NWs sono in grado di prendere contatto con esso e di differenziare, suggerendo che questo sistema può utilizzato per controllare il differenziamento cellulare.

Molinaro, R. (2016). Role of mechanical stress on modulating the differentiation of myogenic cells [10.58015/molinaro-rita_phd2016].

Role of mechanical stress on modulating the differentiation of myogenic cells

MOLINARO, RITA
2016-01-01

Abstract

Mechanical signals are important regulators of cellular proliferation and differentiation. Cells are able to sense microenvironment perturbations and to produce a response such as proliferation, differentiation, migration, apoptosis. Skeletal muscle cells are not able to regenerate after a severe loss of tissue. The engineering of muscle in vitro is a major challenge in view of possible replacements of tissue damage after degenerative diseases or accidents. In this context, the comprehension of the relationship that exists between the substrate (microenvironment) and the cellular response is pivotal for the creation of artificial tissues. The aim of this study is to test the role of mechanical stress on differentiation processes and to highlight the role of yes-associated protein (YAP) in this processes. We decided to use as experimental model skeletal muscle cells because muscle is continuously exposed to mechanical stress. We decided to induce two different type of stress: (1) in the first one we embedded myoblast cells (C2C12) in a 3D matrix made of polyethylene glycol and fibrinogen (PEG-F) because in this way we can mimic a physiological environment. We evaluate the role of compression applied by the hydrogel at two different concentration and then we compressed cells embedded into the hydrogel by a devices built specifically to this purpose; (2) in the second approach we seeded mesoangioblast cells (Mabs) on a layer of high density vertical ZnO nanowires (NWs) to evaluate the ability of Mabs cells to differentiate on it. For the first study, we characterized the YAP phosphorylation level in cells growing in two different microenvironment: polystyrene substrate (2D) and PEG-F matrix (3D). We observed that in cells embedded into a 3D matrix YAP phosphorylation occurs earlier compared to 2D. Then we evaluated cellular response to a different PEG-F matrix concentrations and correlate it to myoblast differentiation markers. We found that YAP is more active at a transcriptional level in cells embedded in a soft matrix and that the differentiation markers show an higher level. Then we evaluated the effect of compression on C2C12 cells encapsulated in the PEG-F matrix, demonstrating that compression induce differentiation in a marked way in a very short range of time. In the second approach we seeded Mabs cells on glasses functionalized with high density vertical ZnO NWs. We show that this support is compatible with cells viability but cells assume a round shape. Further experiments suggested that cells are not able to assume a classic conformation because NWs structure impede them to take contact with the substrate. Cells seeded on ZnO NWs preserve the ability to differentiate, in fact, when cells are detached from the ZnO NWs layer and seeded again on a glass not functionalized they are able to take contact with the substrate and then to differentiate, indicating that ZnO NWs can be a system to finely control cellular differentiation.
2016
2015/2016
Biochimica e Biologia Molecolare
29.
I segnali meccanici sono importanti regolatori della proliferazione cellulare e del differenziamento. Le cellule sono in grado di percepire le modificazioni del microambiente e di produrre una risposta: proliferazione, differenziamento, migrazione o apoptosi. Le cellule del muscolo scheletrico non sono in grado di rigenerarsi dopo aver subito un grave danno. Pertanto, in seguito a danno tissutale dovuto, ad esempio, a una malattia degenerativa lo sviluppo di tessuti muscolari, in vitro, per sostituire quelli danneggiati è una delle più grandi sfide. In questo contesto è importante comprendere la relazione che intercorre tra il microambiente e la cellula. Lo scopo di questo lavoro è valutare l’effetto dello stress meccanico sul processo di differenziamento cellulare e di comprendere meglio il ruolo che la proteina YAP svolge in esso. Il modello sperimentale utilizzato è costituito da cellule miogeniche in quanto il muscolo è continuamente esposto a stress meccanico. Sono stati applicati due diversi tipi di stress: (1) cellule mioblastiche sono state seminate in una matrice 3D composta da polietilen glicole e fibrinogeno (PEG-F) per mimare una condizione fisiologica. E’ stato valutato il ruolo della compressione applicata dalla stessa matrice a diverse concentrazioni (7 e 14 mg/ml) e, in seguito, è stato valutato il ruolo della compressione applicata da un dispositivo appositamente costruito; (2) mesoangioblasti sono stati seminati su uno strato di nanowires (NWs) di ZnO ed è stato valutato il loro effetto sul differenziamento cellulare. E’ stato valutato il livello di fosforilazione della proteina YAP in cellule cresciute in due differenti microambienti: un substrato di polistirene (2D) e una matrice di PEG-F (3D). È stato osservato che in cellule seminate nella matrice 3D la fosforilazione della proteina YAP si verifica prima rispetto alle cellule seminate sulla matrice 2D. Le cellule sono state seminate nella matrice PEG-F a due differenti concentrazioni (7 e 14 mg/ml) ed è stata valutata la risposta cellulare e la correlazione con il processo di differenziamento. È risultato che nelle cellule seminate nella matrice alla concentrazione di 7mg/ml la proteina YAP è maggiormente attiva a livello trascrizionale e i marcatori del differenziamento sono più espressi. Successivamente è stato valutato l’effetto della compressione sulle cellule C2C12 cresciute nella matrice ed è stato dimostrato che la compressione induce il differenziamento cellulare. Nella seconda parte del lavoro cellule mesangioblastiche sono state seminate su un substrato funzionalizzato con NWs verticali di ZnO. È stato dimostrato che questa tipologia di substrato è compatibile con la vitalità cellulare, ma le cellule assumono una forma rotondeggiante. Ulteriori esperimenti suggeriscono che le cellule non sono in grado di assumere la loro classica forma perché i NWs impediscono loro di aderire al substrato. In queste condizioni le cellule sono in grado di preservare la capacità di differenziare, infatti quando le cellule vengono staccate da questo substrato e riseminate su un supporto privo di NWs sono in grado di prendere contatto con esso e di differenziare, suggerendo che questo sistema può utilizzato per controllare il differenziamento cellulare.
Biochemistry; Anatomy; Istology; Mechanical Stress; Myogenic Cells
Settore BIO/17 - ISTOLOGIA
Settore MED/08 - ANATOMIA PATOLOGICA
Settore BIO/10 - BIOCHIMICA
Settore BIOS-13/A - Istologia ed embriologia umana
Settore MEDS-04/A - Anatomia patologica
Settore BIOS-07/A - Biochimica
English
Tesi di dottorato
Molinaro, R. (2016). Role of mechanical stress on modulating the differentiation of myogenic cells [10.58015/molinaro-rita_phd2016].
File in questo prodotto:
File Dimensione Formato  
ULTIMAAA con correzioni 1reviewer EP.pdf

solo utenti autorizzati

Licenza: Copyright degli autori
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/202960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact