The present thesis is motivated by the attempt to find polymeric or hybrid organic-inorganic materials for electrooptic modulators. For practical uses, nonlinear optical (NLO) materials must possess both large nonlinearity and temporal stability. Second order NLO properties appear after some additional post-deposition procedures. Indeed, after deposition, these composed materials are centrosymmetric and, as such, not endowed of second order properties. Poling, i.e. the orientation of the molecular dipoles, is necessary in order to break this centrosymmetry. Two different poling methods are investigated and discussed: corona and all-optical poling. The first technique, developed in the NeMO laboratory, involves a dc electric field, used to orient the dipoles of the material at a temperature where the molecule dipoles can rotate. The second one uses two coherent sources possessing different frequencies (ω and 2ω) to induce a reversible static polarization inside the medium at room temperature. This last work was performed in the Laboratoire des Propriétés Optiques des Matériaux et Applications (POMA) at the University of Angers thanks to the COST P8 grant. By poling, the dipoles can be oriented parallel or perpendicular to the film plane. Linear (Polarized Absorption Spectroscopy-PAS) and nonlinear (Second Harmonic Generation-SHG) characterizations are performed on the studied systems in order to reveal the orientation. Accelerated aging tests are performed using temperature as degrading agent and polar order decay monitored by SHG. All the decay curves are well fitted by a double exponential function. An extrapolation of the slower relaxation time using the Arrhenius model, permits to obtain the stability of nonlinear properties at room temperature. Macroscopic second order nonlinearities, orientation mechanisms (raise and decay of the poled order responsible for the nonlinearity) and chemical nature of different systems are discussed. At least two promising materials are found, a polyimide-based and a hybrid sol-gel-based system, and the fabrication of a prototype of electrooptic modulator is envisaged in collaboration with the research centers of some Italian private companies. This work is pursued mainly under the ODEON European project and performed in the NeMO laboratory at the University of Roma “Tor Vergata.

Il presente lavoro è motivato dalla necessità di trovare nuovi materiali polimerici o ibridi organiciinorganici per la realizzazione di modulatori elettroottici. Per essere utilizzati in un dispositivo reale, i materiali dotati di proprietà ottiche nonlineari devono possedere elevata attività nonlineare e stabilità temporale. Affinché un materiale esibisca proprietà ottiche nonlineari del secondo ordine, esso deve essere sottoposto ad una procedura post-deposizione che definisca una direzione preferenziale in un sistema in partenza centrosimmetrico. A questo scopo sono state utilizzate due diverse tecniche di orientamento: corona e all-optical poling. La prima tecnica, studiata nel laboratorio NeMO, utilizza un campo elettrico statico per orientare le molecole, la cui mobilità viene aumentata innalzandone la temperatura. La seconda, utilizza la sovrapposizione di due sorgenti coerenti alle frequenze ω e 2ω per indurre una polarizzazione su campioni mantenuti a temperatura ambiente. In particolare, questa parte di lavoro è stata sviluppata nel Laboratoire des Propriétés Optiques des Matériaux et Applications (POMA) presso l’Università di Angers, grazie ad una borsa di studio finanziata dal COST P8. Grazie a queste tecniche di poling, i dipoli delle molecole possono essere orientati in una direzione parallela o perpendicolare alla superficie del film. Tale orientazione è stata caratterizzata tramite misure di assorbimento di luce polarizzata (PAS) e di generazione di seconda armonica (SHG). Utilizzando la temperatura come agente degradante, sono stati effettuati test di invecchiamento accelerato su film sottili di materiale polimerico e ibrido organico-inorganico sintetizzato con la tecnica sol-gel. Le curve di decadimento rivelano un andamento doppio esponenziale. Riportando il tempo di rilassamento lento in funzione della temperatura di invecchiamento, è stato possibile estrapolare, tramite un relazione tipo-Arrehnius, il tempo di rilassamento a temperatura ambiente. Due materiali sono risultati promettenti per le applicazioni desiderate: un sistema polimerico basato su una poliimide e un sistema ibrido. La realizzazione di un dispositivo elettroottico verrà realizzata in collaborazione con un’industria italiana. Questo lavoro di tesi rientra nell’ambito di un progetto europeo (ODEON) ed è stato sviluppato principalmente nel laboratorio NeMO presso l’Università di Roma “Tor Vergata”.

(2005). Electrical and all-optical poling of nonlinear optical materials: relaxation dynamics.

Electrical and all-optical poling of nonlinear optical materials: relaxation dynamics

QUATELA, ALESSIA
2005

Abstract

Il presente lavoro è motivato dalla necessità di trovare nuovi materiali polimerici o ibridi organiciinorganici per la realizzazione di modulatori elettroottici. Per essere utilizzati in un dispositivo reale, i materiali dotati di proprietà ottiche nonlineari devono possedere elevata attività nonlineare e stabilità temporale. Affinché un materiale esibisca proprietà ottiche nonlineari del secondo ordine, esso deve essere sottoposto ad una procedura post-deposizione che definisca una direzione preferenziale in un sistema in partenza centrosimmetrico. A questo scopo sono state utilizzate due diverse tecniche di orientamento: corona e all-optical poling. La prima tecnica, studiata nel laboratorio NeMO, utilizza un campo elettrico statico per orientare le molecole, la cui mobilità viene aumentata innalzandone la temperatura. La seconda, utilizza la sovrapposizione di due sorgenti coerenti alle frequenze ω e 2ω per indurre una polarizzazione su campioni mantenuti a temperatura ambiente. In particolare, questa parte di lavoro è stata sviluppata nel Laboratoire des Propriétés Optiques des Matériaux et Applications (POMA) presso l’Università di Angers, grazie ad una borsa di studio finanziata dal COST P8. Grazie a queste tecniche di poling, i dipoli delle molecole possono essere orientati in una direzione parallela o perpendicolare alla superficie del film. Tale orientazione è stata caratterizzata tramite misure di assorbimento di luce polarizzata (PAS) e di generazione di seconda armonica (SHG). Utilizzando la temperatura come agente degradante, sono stati effettuati test di invecchiamento accelerato su film sottili di materiale polimerico e ibrido organico-inorganico sintetizzato con la tecnica sol-gel. Le curve di decadimento rivelano un andamento doppio esponenziale. Riportando il tempo di rilassamento lento in funzione della temperatura di invecchiamento, è stato possibile estrapolare, tramite un relazione tipo-Arrehnius, il tempo di rilassamento a temperatura ambiente. Due materiali sono risultati promettenti per le applicazioni desiderate: un sistema polimerico basato su una poliimide e un sistema ibrido. La realizzazione di un dispositivo elettroottico verrà realizzata in collaborazione con un’industria italiana. Questo lavoro di tesi rientra nell’ambito di un progetto europeo (ODEON) ed è stato sviluppato principalmente nel laboratorio NeMO presso l’Università di Roma “Tor Vergata”.
2005/2006
Fisica
18.
The present thesis is motivated by the attempt to find polymeric or hybrid organic-inorganic materials for electrooptic modulators. For practical uses, nonlinear optical (NLO) materials must possess both large nonlinearity and temporal stability. Second order NLO properties appear after some additional post-deposition procedures. Indeed, after deposition, these composed materials are centrosymmetric and, as such, not endowed of second order properties. Poling, i.e. the orientation of the molecular dipoles, is necessary in order to break this centrosymmetry. Two different poling methods are investigated and discussed: corona and all-optical poling. The first technique, developed in the NeMO laboratory, involves a dc electric field, used to orient the dipoles of the material at a temperature where the molecule dipoles can rotate. The second one uses two coherent sources possessing different frequencies (ω and 2ω) to induce a reversible static polarization inside the medium at room temperature. This last work was performed in the Laboratoire des Propriétés Optiques des Matériaux et Applications (POMA) at the University of Angers thanks to the COST P8 grant. By poling, the dipoles can be oriented parallel or perpendicular to the film plane. Linear (Polarized Absorption Spectroscopy-PAS) and nonlinear (Second Harmonic Generation-SHG) characterizations are performed on the studied systems in order to reveal the orientation. Accelerated aging tests are performed using temperature as degrading agent and polar order decay monitored by SHG. All the decay curves are well fitted by a double exponential function. An extrapolation of the slower relaxation time using the Arrhenius model, permits to obtain the stability of nonlinear properties at room temperature. Macroscopic second order nonlinearities, orientation mechanisms (raise and decay of the poled order responsible for the nonlinearity) and chemical nature of different systems are discussed. At least two promising materials are found, a polyimide-based and a hybrid sol-gel-based system, and the fabrication of a prototype of electrooptic modulator is envisaged in collaboration with the research centers of some Italian private companies. This work is pursued mainly under the ODEON European project and performed in the NeMO laboratory at the University of Roma “Tor Vergata.
corona polin; all-optical poling; accelerated aging test; SHG; nonlinear optics; relaxation dynamics
Settore FIS/01 - Fisica Sperimentale
Settore CHIM/05 - Scienza e Tecnologia dei Materiali Polimerici
English
Tesi di dottorato
(2005). Electrical and all-optical poling of nonlinear optical materials: relaxation dynamics.
File in questo prodotto:
File Dimensione Formato  
TesidiDottoratoDr.Alessia Quatela.pdf

accesso aperto

Licenza: Non specificato
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/202923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact