Defective expression of frataxin is responsible for the degenerative disease Friedreich’s ataxia (FRDA). Frataxin is an iron-binding protein involved in the biogenesis of iron–sulfur clusters (ISC), prosthetic groups allowing essential cellular functions such as oxidative phosphorylation, enzyme catalysis and gene regulation. Frataxin is a protein required for cell survival since complete knock-out is lethal. Partial expression of the frataxin allows the development and survival of the organism, yet results in progressive degeneration of specific tissues. Although several evidence suggest that frataxin acts as an iron-chaperone within the mitochondrial compartment, it was recently demonstrated the existence of a functional extramitochondrial pool of mature frataxin in various human cell types. The aim of my work in the first part was to investigate for a physiological role of extramitochondrial frataxin in the cytoplasmic compartment searching for ISCdependent interaction. The extramitochondrial form of frataxin was demonstrated to directly interact with cytosolic aconitase/iron regulatory protein-1 (IRP1), a bifunctional protein that alternates between an enzymatic and a RNA-binding function through the “iron–sulfur switch” mechanism. Importantly, the cytosolic aconitase defect and consequent IRP1 activation occurring in FRDA cells was found to be reversed by the action of extramitochondrial frataxin. Frataxin protects tumor cells against oxidative stress and apoptosis but also acts as a tumor suppressor. The molecular bases of this apparent paradox are missing. The aim of my work in the second part was to investigate the pathways through which frataxin enhances stress resistance in tumor cells. Frataxin expression was found to be upregulated in several tumor cell lines in response to hypoxic stress, a condition often associated with tumor progression. Moreover, frataxin upregulation in response to hypoxia is dependent on HypoxiaInducible-Factors (HIFs) expression and modulates tumor suppressor p53 activation. Importantly, this work shows for the first time an in vivo increase of frataxin in human glioblastoma and colon carcinoma tumor samples. These results show that frataxin participates to the hypoxia-induced stress response in tumors, thus implying that modulation of its expression could play a critical role in tumor cell survival and/or progression.
La frataxina è una proteina mitocondriale, la cui ridotta espressione è responsabile di una malattia neurodegenerativa ereditaria, l’atassia di Friedreich (FRDA). La frataxina è una proteina che lega il ferro ed è coinvolta nella biogenesi dei gruppi ferro-zolfo (ISC), gruppi prostetici che svolgono funzioni cellulari essenziali come la fosforilazione ossidativa, la catalisi enzimatica e regolazione dei geni. La frataxina è richiesta per lo sviluppo, poiché la sua assenza è letale in embrioni di topo e provoca l’arresto nello sviluppo del nematode C. elegans. Una parziale espressione della frataxina permette lo sviluppo e la sopravvivenza dell’organismo, e determina una progressiva degenerazione di tessuti specifici. Sebbene molte evidenze suggeriscano che la frataxina agisca da chaperone nel compartimento mitocondriale, è stato recentemente dimostrato l'esistenza di un pool funzionale di frataxina extramitocondriale in vari tipi di cellule umane. Lo scopo del mio lavoro nella prima parte è stato di indagare sul possibile ruolo fisiologico della frataxina extramitocondriale nel compartimento citoplasmatico studiando l’interazione della proteina con un possibile patner ISC-dipendente. E' stato dimostrato che la forma extramitocondriale della frataxina interagisce direttamente con l’aconitasi citosolica/ proteina regolatoria del ferro-1 (IRP1), una proteina bifunzionale che alterna la funzione enzimatica di aconitasi e la funzione di “RNA-binding” attraverso il meccanismo dello “switch” del cluster ferro-zolfo. Inoltre il difetto dell’aconitasi citosolica e la conseguente attivazione di IRP1 come proteina che lega l’RNA, che si verifica nelle cellule dei pazienti affetti da atassia di Friedreich, viene revertito con l'azione della frataxina extramitocondriale. La frataxina, inoltre, protegge le cellule tumorali dallo stress ossidativo e dall’apoptosi, ma agisce anche da soppressore tumorale. Le basi molecolari di questo apparente paradosso non sono ad oggi note. Nella seconda parte del mio lavoro ho osservato che l'espressione della frataxina è aumentata in diverse linee cellulari tumorali in risposta allo stress ipossico, una condizione spesso associata alla progressione del tumore. Inoltre, l'aumento della frataxina in risposta all'ipossia dipende dai Fattori di espressione Ipossia-Inducibili (HIF) e modula l’attivazione del soppressore tumorale p53. E’ stato mostrato per la prima volta in vivo l’ aumento di frataxina in campioni chirurgici di glioblastoma umano e campioni umani di carcinoma di colon. Questi risultati mostrano che la frataxina partecipa alla risposta allo stress indotto da ipossia nei tumori, ciò implica che la modulazione della sua espressione potrebbe svolgere un ruolo determinante nella sopravvivenza e/o nella progressione delle cellule tumorali.
Guccini, I. (2011). Frataxin and the stress response [10.58015/guccini-ilaria_phd2011].
Frataxin and the stress response
GUCCINI, ILARIA
2011-01-01
Abstract
Defective expression of frataxin is responsible for the degenerative disease Friedreich’s ataxia (FRDA). Frataxin is an iron-binding protein involved in the biogenesis of iron–sulfur clusters (ISC), prosthetic groups allowing essential cellular functions such as oxidative phosphorylation, enzyme catalysis and gene regulation. Frataxin is a protein required for cell survival since complete knock-out is lethal. Partial expression of the frataxin allows the development and survival of the organism, yet results in progressive degeneration of specific tissues. Although several evidence suggest that frataxin acts as an iron-chaperone within the mitochondrial compartment, it was recently demonstrated the existence of a functional extramitochondrial pool of mature frataxin in various human cell types. The aim of my work in the first part was to investigate for a physiological role of extramitochondrial frataxin in the cytoplasmic compartment searching for ISCdependent interaction. The extramitochondrial form of frataxin was demonstrated to directly interact with cytosolic aconitase/iron regulatory protein-1 (IRP1), a bifunctional protein that alternates between an enzymatic and a RNA-binding function through the “iron–sulfur switch” mechanism. Importantly, the cytosolic aconitase defect and consequent IRP1 activation occurring in FRDA cells was found to be reversed by the action of extramitochondrial frataxin. Frataxin protects tumor cells against oxidative stress and apoptosis but also acts as a tumor suppressor. The molecular bases of this apparent paradox are missing. The aim of my work in the second part was to investigate the pathways through which frataxin enhances stress resistance in tumor cells. Frataxin expression was found to be upregulated in several tumor cell lines in response to hypoxic stress, a condition often associated with tumor progression. Moreover, frataxin upregulation in response to hypoxia is dependent on HypoxiaInducible-Factors (HIFs) expression and modulates tumor suppressor p53 activation. Importantly, this work shows for the first time an in vivo increase of frataxin in human glioblastoma and colon carcinoma tumor samples. These results show that frataxin participates to the hypoxia-induced stress response in tumors, thus implying that modulation of its expression could play a critical role in tumor cell survival and/or progression.File | Dimensione | Formato | |
---|---|---|---|
PDF_TESI_DOTTORATO_ Guccini.pdf
solo utenti autorizzati
Licenza:
Copyright degli autori
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.