In this work a flexible photo-rechargeable device obtained coupling a Dye-Sensitized Solar Cell and a micro-supercapacitor was developed and tested. The energy harvester based on Dye-Sensitized Solar Cell (DSSC) was implemented using an innovative and efficient counter-electrode based on Molecular Imprinted polypyrrole (MIP-PPy). Glycine as a template molecule was found to produce the highest solar cells efficiency when a gel-state electrolyte was used. At the same time, the electrochemical storage unit based on flexible micro-supercapacitor (µ-SC) was studied focusing on the electrodes properties (Zinc Oxide and reduced Graphene Oxide). ZnO as pseudocapacitive electrode was produced and the influence of surfactant molecules introducing during the electrochemical synthesis on specific capacitance and transparency of the obtained film was studied. On the other hand, electrochemically reduced Graphene Oxide (rGO) double layer electrode was prepared and the influence of the deposition time on the electrode properties was studied. The final device was obtained coupling the best ZnO and rGO electrode with an electrolyte gelled with silica or nanoclay. The second one leads to the device with the highest capacitance and cycling stability. Finally, a flexible photo-rechargeable based on DSSC and µ-SC was prepared; the two systems were integrated in the same substrate creating a unique, integrated device. The photovoltage produced by the DSSC under illumination was found to be able to recharge the flexible µ-SC.

(2016). Portable photo-rechargeable device based on Molecular Imprinted Polypyrrole counter-electrode.

Portable photo-rechargeable device based on Molecular Imprinted Polypyrrole counter-electrode

SANGIORGI, NICOLA
2016-01-01

Abstract

In this work a flexible photo-rechargeable device obtained coupling a Dye-Sensitized Solar Cell and a micro-supercapacitor was developed and tested. The energy harvester based on Dye-Sensitized Solar Cell (DSSC) was implemented using an innovative and efficient counter-electrode based on Molecular Imprinted polypyrrole (MIP-PPy). Glycine as a template molecule was found to produce the highest solar cells efficiency when a gel-state electrolyte was used. At the same time, the electrochemical storage unit based on flexible micro-supercapacitor (µ-SC) was studied focusing on the electrodes properties (Zinc Oxide and reduced Graphene Oxide). ZnO as pseudocapacitive electrode was produced and the influence of surfactant molecules introducing during the electrochemical synthesis on specific capacitance and transparency of the obtained film was studied. On the other hand, electrochemically reduced Graphene Oxide (rGO) double layer electrode was prepared and the influence of the deposition time on the electrode properties was studied. The final device was obtained coupling the best ZnO and rGO electrode with an electrolyte gelled with silica or nanoclay. The second one leads to the device with the highest capacitance and cycling stability. Finally, a flexible photo-rechargeable based on DSSC and µ-SC was prepared; the two systems were integrated in the same substrate creating a unique, integrated device. The photovoltage produced by the DSSC under illumination was found to be able to recharge the flexible µ-SC.
2016
2016/2017
materials for health, environment and energy
29.
Settore CHIM/03 - CHIMICA GENERALE E INORGANICA
English
Tesi di dottorato
(2016). Portable photo-rechargeable device based on Molecular Imprinted Polypyrrole counter-electrode.
File in questo prodotto:
File Dimensione Formato  
PhD-Thesis-NicolaSangiorgi.pdf

solo utenti autorizzati

Licenza: Non specificato
Dimensione 6.57 MB
Formato Adobe PDF
6.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/201675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact