The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger–Reissner variational formulation. A low-order Virtual Element Method (VEM) with a priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis.

Artioli, E., De miranda, S., Lovadina, C., Patruno, L. (2017). A stress/displacement Virtual Element method for plane elasticity problems. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 325, 155-174 [10.1016/j.cma.2017.06.036].

A stress/displacement Virtual Element method for plane elasticity problems

Artioli, E;
2017-01-01

Abstract

The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger–Reissner variational formulation. A low-order Virtual Element Method (VEM) with a priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ICAR/08 - SCIENZA DELLE COSTRUZIONI
English
Elasticity; Hellinger–Reissner; Low order method; Symmetric stress; Virtual element method; Computational Mechanics; Mechanics of Materials; Mechanical Engineering; Physics and Astronomy (all); Computer Science Applications1707 Computer Vision and Pattern Recognition
http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/
Artioli, E., De miranda, S., Lovadina, C., Patruno, L. (2017). A stress/displacement Virtual Element method for plane elasticity problems. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 325, 155-174 [10.1016/j.cma.2017.06.036].
Artioli, E; De miranda, S; Lovadina, C; Patruno, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Artioli_deMiranda_Lovadina_Patruno_CMAME_2017.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/200769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 82
social impact