In this paper, we study existence of solutions for the following elliptic problem, related to mean-field games systems:-div(M(x)del zeta) + zeta - div(zeta A(x)del(u) = f in Omega,-div(M(x)del u) + u + theta A(x)del u . del u = zeta(p) in Omega,zeta = 0 = u on partial derivative Omega,where p > 0, 0 < theta < 1, and f >= 0 is a function in some Lebesgue space. (C) 2016 Elsevier Inc. All rights reserved.

Boccardo, L., Orsina, L., Porretta, A. (2016). Strongly coupled elliptic equations related to mean-field games systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 261(3), 1796-1834 [10.1016/j.jde.2016.04.018].

Strongly coupled elliptic equations related to mean-field games systems

Porretta A.
2016-01-01

Abstract

In this paper, we study existence of solutions for the following elliptic problem, related to mean-field games systems:-div(M(x)del zeta) + zeta - div(zeta A(x)del(u) = f in Omega,-div(M(x)del u) + u + theta A(x)del u . del u = zeta(p) in Omega,zeta = 0 = u on partial derivative Omega,where p > 0, 0 < theta < 1, and f >= 0 is a function in some Lebesgue space. (C) 2016 Elsevier Inc. All rights reserved.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Quasilinear elliptic equations; Elliptic systems; Mean-field games
Boccardo, L., Orsina, L., Porretta, A. (2016). Strongly coupled elliptic equations related to mean-field games systems. JOURNAL OF DIFFERENTIAL EQUATIONS, 261(3), 1796-1834 [10.1016/j.jde.2016.04.018].
Boccardo, L; Orsina, L; Porretta, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/200424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact